Citation: | Gao Shunbao, Zheng Youye, Tian Kan, Chen Xin, Jiang Xiaojia, Gu Yanrong, 2021. Geochronology of Magmatic Intrusions and Mineralization of Lunggar Iron Deposit in Tibet and Its Implications for Regional Multi-Stage Iron Mineralization: Geochemistry, Zircon U-Pb and Phlogopite Ar-Ar Isotopic Dating Constraints. Earth Science, 46(6): 1941-1959. doi: 10.3799/dqkx.2020.216 |
Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999. Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature, 399: 252-255. https://doi.org/10.1038/20426
|
Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x doi: 10.1016/S0009-2541(02)00195-X
|
Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/S0012-821x(97)00040-x doi: 10.1016/S0012-821X(97)00040-X
|
Chu, N.C., Taylor, R.N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. https://doi.org/10.1039/b206707b
|
Crofu, F., Hanchar, J.M., Hoskin, P.W.O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. https://doi.org/10.2113/0530469
|
Fei, F., Yang, Z.S., Liu, Y.C., et al., 2015. Petrogenetic Epoch of the Rock Mass in the Lunggar Iron Deposit of Coqen County, Tibet. Acta Petrologica et Mineralogica, 34(4): 568-580(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201504010.htm
|
Fu, Q., Yang, Z.S., Zheng, Y.C., et al., 2013. Zircon U-Pb Ages, Hf Isotope and Geochemistry of Granodiorite in Jialapu Fe Deposit, Tibet. Mineral Deposits, 32(3): 564-578(in Chinese with English abstract). http://www.researchgate.net/publication/288011690_Zircon_U-Pb_ages_Hf_isotope_and_geochemistry_of_granodiorite_in_Jialapu_Fe_deposit_Tibet
|
Gao, S.B., 2015. Copper-Iron Polymetal Metallogenic Regularity and Election of Target Areas in the Western of Gangdise Metallogenic Belt, Tibet (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
|
Gao, S.B., Zheng, Y.Y., Jiang, J.S., et al., 2019. Geochemistry and Geochronology of the Gebunongba Iron Polymetallic Deposit in the Gangdese Belt, Tibet. Journal of Earth Science, 30(2): 296-308. https://doi.org/10.1007/s12583-018-0984-0
|
Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 doi: 10.1016/S0016-7037(99)00343-9
|
Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
|
Koppers, A.A.P., 2002. Ar-Ar CALC-Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605-619. https://doi.org/10.1016/s0098-3004(01)00095-4 http://www.sciencedirect.com/science/article/pii/s0098300401000954
|
Li, Y.X., Xie, Y.L., Chen, W., et al., 2011. U-Pb Age and Geochemical Characteristics of Zircon in Monzogranite Porphyry from Qiagong Deposit, Tibet, and Geological Implication. Acta Petrologica Sinica, 27(7): 2023-2033(in Chinese with English abstract). http://www.oalib.com/paper/1476881
|
Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
|
Ma, W., Liu, Y.C., Yang, Z.S., et al., 2019. Characteristics of Ore-Forming Fluids of Lietinggang-Leqingla Pb-Zn-Fe-Cu-Mo Polymetallic Deposit in Tibetan: Evidence from Fluid Inclusions and Stable Isotope Compositions. Earth Science, 44(6): 1957-1973(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906015.htm
|
Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
|
Middlemost, E.A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
|
Mišković, A., Schaltegger, U., 2009. Crustal Growth along a Non-Collisional Cratonic Margin: A Lu-Hf Isotopic Survey of the Eastern Cordilleran Granitoids of Peru. Earth and Planetary Science Letters, 279(3-4): 303-315. https://doi.org/10.1016/j.epsl.2009.01.002
|
Qiu, H.N., 2006. Construction and Development of New Ar-Ar Laboratories in China: Insight from GV-5400 Ar-Ar Laboratory in Guangzhou Insitute of Geochemistry, Chinese Academy of Sciences. Geochimica, 35(2): 133-140(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200602003.htm
|
Rapp, R.P., 1997. Heterogneous Source Regions for Archean Granitoids. In: de Wit, M.J., Ashwal, L.D., eds., Greenstone Belts. Oxford University Press, Oxford.
|
Roberts, M.P., Clemens, J.D., 1993. Origin of High-Potassium, Calc-Alkaline, I-Type Granitoids. Geology, 21(9): 825-828. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2
|
Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R.L., ed., The Crust Treaties on Geochemistry. Elsevier Pergamon, Oxford, 3: l-64. https: //doi.org/10.1016/s0074-6142(09)60137-6
|
Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 doi: 10.1016/S0012-821X(04)00012-3
|
Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
|
Vervoort, J.D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3-4): 533-556. https://doi.org/10.1016/s0016-7037(98)00274-9 doi: 10.1016/S0016-7037(98)00274-9
|
Wu, F.Y., Ge, W.C., Sun, D.Y., 2002. The Idea, Identified Signs and Geological Significance of Adakite. In: Xiao, Q.H., Deng, J.F., Ma, D.Q., et al., eds., The Ways of Investigation on Granitoids. Geological Publishing House, Beijing, 178-180(in Chinese).
|
Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract). http://www.oalib.com/paper/1492671
|
Wu, Y.B., Zheng, Y.F., 2004. Genetic Mineralogy of Zircon and Its Constrains on the Interpretation of U-Pb Ages. Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1007/BF03184122
|
Yang, Y., Duo, J., De, X., et al., 2015. Zircon U-Pb Dating and Hf Isotopic Composition of Intrusions in the Lietinggang Iron Polymetallic Deposit in Tibet and Their Geological Significance. Acta Petrologica et Mineralogica, 34(3): 281-294(in Chinese with English abstract).
|
Yang, Y., Duo, J., Liu, H.F., et al., 2014. Re-Os Dating of Molybdenite in Lietinggang Iron Polymetallic Deposit and Its Geological Significance. Geology in China, 41 (5): 1554-1564(in Chinese with English abstract). http://www.researchgate.net/publication/286345512_Re-Os_dating_of_molybdenite_from_the_Lietinggang_iron_polymetallic_deposit_of_Tibet_and_its_geological_significance
|
Yu, Y.S., Gao, Y., Yang, Z.S., et al., 2011a. LA-ICP-MS U-Pb Age and Geochemical Characteristics of Zircon in the Intrusive Rocks of Gunjiu Iron Ore in Cuoqinnixiong Deposit, Tibet. Acta Petrologica Sinica, 27(7): 1949-1960(in Chinese with English abstract).
|
Yu, Y.S., Yang, Z.S., Duo, J., et al., 2011b. Age and Genesis of Jiaduobule Iron-Copper Metallogenic Rock Mass in Tibet: Evidence of Zircon U-Pb Age, Hf Isotope and REE. Mineral Deposits, 30(3): 420-434(in Chinese with English abstract).
|
Yu, Y.S., Zhou, Y., Bao, B., et al., 2019. Geochronolgy Petrogenesis and Its Tectonic Setting Significance of Intrusive Rocks from Coqen to Lunggar Iron Deposit, Lhasa Subterrane, Tibet, China. Earth Science, 44(6): 1888-1904(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906011.htm
|
Zhang, X.Q., Zhu, D.C., Zhao, Z.D., et al., 2011. Petrogenesis of the Nixiong Pluton in Coqen, Tibet and Its Potential Significance for the Nixiong Fe-Rich Mineralization. Acta Petrologica Sinica, 26(6): 1793-1804(in Chinese with English abstract).
|
Zhang, Y.H., Wang, Y.S., Wang, W.S., et al., 2019. Zircon U-Pb-Hf Isotopes and Mineral Chemistry of Early Cretaceous Granodiorite in the Lunggar Iron Deposit in Central Lhasa, Tibet China. Journal of Central South University, 26(12): 3457-3469. https://doi.org/10.1007/s11771-019-4266-5
|
Zhao, Y.M., 2013. Main Genetic Types and Geological Characteristics of Iron-Rich Ore Deposits in China. Mineral Deposits, 32(4): 686-705(in Chinese with English abstract). http://www.researchgate.net/publication/284603272_Main_genetic_types_and_geological_characteristics_of_ironrich_ore_deposits_in_China
|
Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2014. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. https://doi.org/10.1016/j.jseaes.2013.03.029
|
Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005
|
Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1): 1-15(in Chinese with English abstract). http://www.researchgate.net/publication/260835521_Origin_and_Paleozoic_Tectonic_Evolution_of_the_Lhasa_Terrane
|
费凡, 杨竹森, 刘英超, 等, 2015. 西藏措勤隆格尔铁矿岩体成岩时代及其地质意义. 岩石矿物学杂志, 34(4): 568-580. doi: 10.3969/j.issn.1000-6524.2015.04.010
|
付强, 杨竹森, 郑远川, 等, 2013. 加拉普铁矿区花岗闪长岩锆石U-Pb年龄、Hf同位素及地球化学研究. 矿床地质, 32(3): 564-578. doi: 10.3969/j.issn.0258-7106.2013.03.008
|
高顺宝, 2015. 西藏冈底斯西段铜铁多金属成矿作用与找矿方向(博士学位论文). 武汉: 中国地质大学.
|
李应栩, 谢玉玲, 陈伟, 等, 2011. 西藏恰功铁矿二长花岗斑岩锆石的U-Pb年代学与地球化学特征及意义. 岩石学报, 27(7): 2023-2033. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107012.htm
|
马旺, 刘英超, 杨竹森, 等, 2019. 西藏列廷冈-勒青拉铅锌铁铜钼矿床成矿流体特征: 来自流体包裹体及碳氢氧同位素的证据. 地球科学, 4(6): 1957-1973. doi: 10.3799/dqkx.2019.041
|
邱华宁, 2006. 新一代Ar-Ar实验室建设与发展趋势: 以中国科学院广州地球化学研究所Ar-Ar实验室为例. 地球化学, 35(2): 133-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200602003.htm
|
吴福元, 葛文春, 孙德有, 2002. 埃达克岩的概念、识别标志及其地质意义, 见: 肖庆辉, 邓晋福, 马大铨, 等编, 花岗岩的研究思维与方法. 北京: 地质出版社, 178-180.
|
吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
|
吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
|
于玉帅, 高原, 杨竹森, 等, 2011a. 西藏措勤尼雄矿田滚纠铁矿侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征. 岩石学报, 27(7): 1949-1960. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107005.htm
|
于玉帅, 杨竹森, 多吉, 等, 2011b. 西藏加多捕勒铁铜矿成矿岩体时代与成因: 锆石U-Pb年龄、Hf同位素与稀土元素证据. 矿床地质, 30(3): 420-434. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201103005.htm
|
于玉帅, 周云, 鲍波, 等, 2019. 拉萨地块措勤-隆格尔地区铁矿床成岩时代、岩石成因及构造环境指示. 地球科学, 44(6): 1888-1904. doi: 10.3799/dqkx.2019.037
|
杨毅, 多吉, 德西央宗, 等, 2015. 西藏列廷冈铁多金属矿侵入岩锆石U-Pb定年、Hf同位素组成及其地质意义. 岩石矿物学杂志, 34(3): 281-294. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201503002.htm
|
杨毅, 多吉, 刘鸿飞, 等. 2014. 西藏列廷冈铁多金属矿床辉钼矿Re-Os定年及其地质意义. 中国地质, 41(5): 1554-1564. doi: 10.3969/j.issn.1000-3657.2014.05.012
|
张晓倩, 朱弟成, 赵志丹, 等, 2010. 西藏措勤尼雄岩体的岩石成因及其对富Fe成矿作用的潜在意义. 岩石学报, 26(6): 1793-1804. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201006014.htm
|
赵一鸣, 2013. 中国主要富铁矿床类型及地质特征. 矿床地质, 32(4): 686-705. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201304006.htm
|
朱弟成, 赵志丹, 牛耀龄, 等, 2012. 拉萨地体的起源和古生代构造演化. 高校地质学报, 18(1): 1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001
|