• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 4
    Apr.  2021
    Turn off MathJax
    Article Contents
    Zhu Jiang, Qiu Xiaofei, Zhou Bao, Zhang Haijun, Wu Yue, Deng Xin, 2021. Neoproterozoic Bimodal Volcanic Rocks from Dingyuan Formation in Western Dabie Area, Northern Margin of Yangtze Block, China: Geochemistry, Petrogenesis and Geological Implications. Earth Science, 46(4): 1311-1327. doi: 10.3799/dqkx.2020.229
    Citation: Zhu Jiang, Qiu Xiaofei, Zhou Bao, Zhang Haijun, Wu Yue, Deng Xin, 2021. Neoproterozoic Bimodal Volcanic Rocks from Dingyuan Formation in Western Dabie Area, Northern Margin of Yangtze Block, China: Geochemistry, Petrogenesis and Geological Implications. Earth Science, 46(4): 1311-1327. doi: 10.3799/dqkx.2020.229

    Neoproterozoic Bimodal Volcanic Rocks from Dingyuan Formation in Western Dabie Area, Northern Margin of Yangtze Block, China: Geochemistry, Petrogenesis and Geological Implications

    doi: 10.3799/dqkx.2020.229
    • Received Date: 2020-05-26
    • Publish Date: 2021-04-15
    • Neoproterozoic bimodal volcanic rocks from the Dingyuan Formation within the western Dabie terrain consist of rhyolite, rhyolitic tuff and basalt. Elemental, whole-rock Sr-Nd and zircon Hf isotopic analyses were carried out in this study for these volcanic rocks, in order to better understand their petrogenesis and geodynamic processes along the northern margin of Yangtze block. The rhyolite is characterized by high concentrations of SiO2 and Al2O3, belongs to the calc-alkaline series, and is peraluminous. It is enriched in light rare earth elements (LREEs) and shows unapparent Eu anomaly. The basalt has SiO2 of 48.26% to 51.71%, Mg# values of 0.32 to 0.59, and is weakly enriched in light rare earth elements. The rhyolite has initial 87Sr/86Sr ratios ranging from 0.703 5 to 0.707 7, and negative εNd(t) values of -10.6 to -6.5, with calculated two-stage Nd model ages of 1.69 to 2.00 Ga, while the basalt has (87Sr/86Sr)i of 0.706 1 to 0.708 1, εNd(t) of -6.6 to +3.4, and the Nd model ages (TDM) values of 1.44 to 2.02 Ga. In situ zircon Hf isotopic analyses show that the εHf(t) values of zircons from the rhyolite vary from -19.2 to -7.2, with calculated two-stage Hf model ages of 1.77 to 2.59 Ga. The geochemical and Sr-Nd-Hf isotopic signatures suggest that the rhyolite has a close affinity to S-type granite, and is derived from partial melting of the ancient crust of the Yangtze block. The basalt is most likely derived from an enriched lithospheric mantle, with fractional crystallization and assimilation of crustal materials during the evolution of the magma. It is proposed that the Neoproterozoic bimodal volcanic suites from the Dingyuan and the Qijiaoshan formations are erupted coevally, but have different sources and magmatic processes. The bimodal volcanic rocks in this study provide evidences for an enriched lithospheric mantle beneath the Dabie terrain at ca.740 Ma, and a rifting extensional setting for the north margin of the Yangtze block.

       

    • loading
    • Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260. https://doi.org/10.1007/s004100050278
      Cai, Z.Y., Xiong, X.L., Luo, H., et al., 2007. Forming Age of the Volcanic Rocks of the Yaolinghe Group from Wudang Block, Southern Qinling Mountain: Constraint from Grain-Zircon U-Pb Dating. Acta Geologica Sinica, 81(5): 620-625(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200705004.htm
      Chen, L., Ma, C.Q., She, Z.B., et al., 2006. Liulin Gabbro in the Beihuaiyang Tectonic Belt of the Dabie Orogen: A Witness of the Late Neoproterozoic Rifting Event. Earth Science, 31(4): 578-584(in Chinese with English abstract). http://www.researchgate.net/publication/283167567_Liulin_gabbro_in_the_Beihuaiyang_tectonic_belt_of_the_Dabie_orogen_A_witness_of_the_late_neoproterozoic_rifting_event
      Christiansen, R L., 1984. Yellowstone Magmatic Evolution: Its Bearing on Understanding Large-Volume Explosive Volcanism. In: Tait, S., ed., Explowive Volcanism: Inception, Evolution and Hazards. National Academy Press, Washington D.C., 84-95.
      Deng, Q.Z., Li, X.W., Deng, Z., et al., 2013. Further Discussion on Stratigraphic Sequence of Hong'an Group and Relevant Problems. Resources Environment & Engineering, 27(2): 125-132(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-HBDK201302005.htm
      Dong, Y. P., Liu, X. M., Santosh, M., et al., 2012. Neoproterozoic Accretionary Tectonics along the Northwestern Margin of the Yangtze Block, China: Constraints from Zircon U-Pb Geochronology and Geochemistry. Precambrian Research, 196-197: 247-274. https://doi.org/10.1016/j.precamres.2011.12.007
      Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1-40. https://doi.org/10.1016/j.gr.2015.06.009
      Glazner, A. F., Farmer, G. L., Hughes, W. T., et al., 1991. Contamination of Basaltic Magma by Mafic Crust at Amboy and Pisgah Craters, Mojave Desert, California. Journal of Geophysical Research: Solid Earth, 96(B8): 13673-13691. https://doi.org/10.1029/91jb00175
      Green, D. H., 1973. Experimental Melting Studies on a Model Upper Mantle Composition at High Pressure under Water-Saturated and Water-Undersaturated Conditions. Earth and Planetary Science Letters, 19(1): 37-53. https://doi.org/10.1016/0012-821x(73)90176-3
      Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8
      Hofmann, A. W., Jochum, K. P., Seufert, M., et al., 1986. Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution. Earth and Planetary Science Letters, 79(1-2): 33-45. https://doi.org/10.1016/0012-821x(86)90038-5
      Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391. https://doi.org/10.1039/c2ja30078h
      Le Maitre, R.W., 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford, 193.
      Li, H.K., Lu, S.N., Chen, Z.H., et al., 2003. Zircon U-Pb Geochronology of Rift-Type Volcanic Rocks of the Yaolinghe Group in the South Qinling Orogen. Geological Bulletin of China, 22(10): 775-781(in Chinese with English abstract). http://www.researchgate.net/publication/284399902_Zircon_U-Pb_geochronology_of_rift-type_volcanic_rocks_of_the_Yaolinghe_Group_in_the_South_Qinling_orogen
      Li, S., Han, W., Huang, F., et al., 1998. Sm-Nd and Rb-Sr Ages and Geochemistry of Volcanics from the Dingyuan Formation in Dabie Mountains, Central China: Evidence to the Paleozonic Magmatic Arc. Scientia Geologica Sinica, 7(4): 461-470. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020417847639.html
      Li, X. H., Li, W. X., Li, Q. L., et al., 2010. Petrogenesis and Tectonic Significance of the ∼850 Ma Gangbian Alkaline Complex in South China: Evidence from In Situ Zircon U-Pb Dating, Hf-O Isotopes and Whole-Rock Geochemistry. Lithos, 114(1-2): 1-15. https://doi.org/10.1016/j.lithos.2009.07.011
      Li, X.H., Li, Z.X., Ge, W., et al., 2003. Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at ca. 825 Ma? Precambrian Research, 122(1-4): 45-83. https://doi.org/10.1016/s0301-9268(02)00207-3
      Liew, T. C., Hofmann, A.W., 1988. Precambrian Crustal Components, Plutonic Associations, Plate Environment of the Hercynian Fold Belt of Central Europe: Indications from a Nd and Sr Isotopic Study. Contributions to Mineralogy and Petrology, 98(2): 129-138. https://doi.org/10.1007/bf00402106
      Ling, W. L., Ren, B. . F., Duan, R. C., et al., 2007. Timing of the Wudangshan, Yaolinghe Volcanic Sequences and Mafic Sills in South Qinling: U-Pb Zircon Geochronology and Tectonic Implication. Chinese Science Bulletin, 52(12): 1445-1456 (in Chinese)
      Liu, X., Wei, C., Li, S., et al., 2004. Thermobaric Structure of a Traverse across Western Dabieshan: Implications for Collision Tectonics between the Sino-Korean and Yangtze Cratons. Journal of Metamorphic Geology, 22: 361-379. https://doi.org/10.1111/j.1525-1314.2004.00519.x
      Liu, Y. C., Li, S. G., Gu, X. F., et al., 2006. Zircon SHRIMP U-Pb Dating for Olivine Gabbro at Wangmuguan in the Beihuaiyang Zone and Its Geological Significance. Chinese Science Bulletin, 51(18): 2175-2180 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JXTW200620011.htm
      Liu, Y.C., Liu, L.X., Gu, X.F., et al., 2010. Occurrence of Neoproterozoic Low-Grade Metagranite in the Western Beihuaiyang Zone, the Dabie Orogen. Chinese Science Bulletin, 55(30): 3490-3498(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXTW201030019.htm
      Luo, B. J., Liu, R., Zhang, H. F., et al., 2018. Neoproterozoic Continental Back-Arc Rift Development in the Northwestern Yangtze Block: Evidence from the Hannan Intrusive Magmatism. Gondwana Research, 59: 27-42. https://doi.org/10.1016/j.gr.2018.03.012
      Ma, C., Ehlers, C., Xu, C., et al., 2000. The Roots of the Dabieshan Ultrahigh-Pressure Metamorphic Terrane: Constraints from Geochemistry and Nd-Sr Isotope Systematics. Precambrian Research, 102(3-4): 279-301. http://www.sciencedirect.com/science/article/pii/S0301926800000693
      Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101: 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:TDOG>2.3.CO;2 doi: 10.1130/0016-7606(1989)1010635:TDOG>2.3.CO;2
      Mao, X.W., Chen, C., Chen, M., et al., 2016. Detrital-Zircon Geochronology for the Metasedimentary Rocks of Hong'an Group Huangmailing Formation in the Northern Hubei and Its Geological Significance. Geological Science and Technology Information, 35(3): 49-55, 86(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201603006.htm
      McKenzie, D., Bickle, M. J., 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphere. Journal of Petrology, 29(3): 625-679. https://doi.org/10.1093/petrology/29.3.625
      O'Hara, M.J., 1965. Primary Magmas and the Origin of Basalts. Scottish Journal of Geology, 1(1): 19-40. https://doi.org/10.1144/sjg01010019
      Pearce, J., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Andesites: Orogenic Andesites and Related Rocks. John Willey & Sons, 525-548.
      Pearce, J.A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/BF00375192
      Said, N., Kerrich, R., 2009. Geochemistry of Coexisting Depleted and Enriched Paringa Basalts, in the 2.7 Ga Kalgoorlie Terrane, Yilgarn Craton, Western Australia: Evidence for a Heterogeneous Mantle Plume Event. Precambrian Research, 174(3-4): 287-309. https://doi.org/10.1016/j.precamres.2009.08.002
      Sigurdsson, H., 1977. Generation of Icelandic Rhyolites by Melting of Plagiogranites in the Oceanic Layer. Nature, 269: 25-28. https://doi.org/10.1038/269025a0
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific, Oxford.
      Wang, J., Li, Z.X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-up. Precambrian Research, 122(1-4): 141-158. https://doi.org/10.1016/S0301-9268(02)00209-7
      Wang, X. C., Li, Z. X., Li, X. H., et al., 2011. Geochemical and Hf–Nd Isotope Data of Nanhua Rift Sedimentary and Volcaniclastic Rocks Indicate a Neoproterozoic Continental Flood Basalt Provenance. Lithos, 127(3/4): 427-440. https://doi.org/10.1016/j.lithos.2011.09.020
      Winchester, J.A., Floyd, P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      Wu, Y. B., Zheng, Y. F., 2013. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402-1428. https://doi.org/10.1016/j.gr.2012.09.007
      Wu, Y. B., Zheng, Y. F., Tang, J., et al., 2007. Zircon U-Pb Dating of Water-Rock Interaction during Neoproterozoic Rift Magmatism in South China. Chemical Geology, 246(1/2): 65-86. https://doi.org/10.1016/j.chemgeo.2007.09.004
      Xu, H. J., Ma, C. Q., Zhang, J. F., et al., 2013. Early Cretaceous Low-Mg Adakitic Granites from the Dabie Orogen, Eastern China: Petrogenesis and Implications for Destruction of the Over-Thickened Lower Continental Crust. Gondwana Research, 23(1): 190-207. https://doi.org/10.1016/j.gr.2011.12.009
      Xu, S.T., Wu, W.P., Lu, Y.Q., et al., 2010. Low-Grade Metamorphic Rocks in Southern Dabie Mt. : The Susong and Zhangbaling Group. Geology of Anhui, 20(1): 5-13(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-AHDZ201001005.htm
      Xue, H.M., Ma, F., Song, Y. Q, 2011. Geochemistry and SHRIMP Zircon U-Pb Data of Neoproterozoic Meta-Magmatic Rocks in the Suizhou-Zaoyang Area, Northern Margin of the Yangtze Craton, Central China. Acta Petrologica Sinica, 27(4): 1116-1130(in Chinese with English abstract). http://www.researchgate.net/publication/285943391_Geochemistry_and_SHRIMP_zircon_U-Pb_data_of_Neoproterozoic_meta-magmatic_rocks_in_the_Suizhou-Zaoyang_area_northern_margin_of_the_Yangtze_Craton_Central_China
      Yang, Y. N., Wang, X. C., Li, Q. L., et al., 2016. Integrated in Situ U-Pb Age and Hf-O Analyses of Zircon from Suixian Group in Northern Yangtze: New Insights into the Neoproterozoic Low-δ18O Magmas in the South China Block. Precambrian Research, 273: 151-164. https://doi.org/10.1016/j.precamres.2015.12.008
      Ye, B.D., Jian, P., Xu, J.W., et al., 1993. Sujiahe Convergent Belt in Northern Tongbai-Dabie Orogen and Its Constitution and Evolution. China University of Geoscience Press, Wuhan (in Chinese).
      Zhang, C., Ma, C. Q., 2008. Large-Scale Late Mesozoic Magmatism in the Dabie Mountain: Constraints from Zircon U-Pb Dating and Hf Isotopes. Journal of Mineralogy and Petrology, 28(4): 71-79 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200804014.htm
      Zhang, G.W., Zhang, B.R., Yuan, X.C., et al., 2001. Qinling Orogenic Belt and Continent Dynamics. Science Press, Beijing (in Chinese).
      Zhang, Q., Ma, W.P., Jin, W.J., et al., 1995. Geochemistry and Tectonic Significance of Post-Tectonic Gabbro from Wangmuguan of Xinxian County, Henan Province. Geochimica, 24(4): 341-350(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX504.003.htm
      Zhao, Z. F., Zheng, Y. F., 2009. Remelting of Subducted Continental Lithosphere: Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt. Science in China Series D: Earth Sciences, 52(9): 1295-1318. https://doi.org/10.1007/s11430-009-0134-8
      Zhao, J. H., Zhou, M. F., 2009. Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China. Lithos, 107(3-4): 152-168. https://doi.org/10.1016/j.lithos.2008.09.017
      Zheng, Y. F., Fu, B., Gong, B., et al., 2003. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie–Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 62(1-2): 105-161. https://doi.org/10.1016/s0012-8252(02)00133-2
      Zheng, Y. F., Gong, B., Zhao, Z. F., et al., 2008. Zircon U-Pb Age and O Isotope Evidence for Neoproterozoic Low 18O Magmatism during Supercontinental Rifting in South China: Implications for the Snowball Earth Event. American Journal of Science, 308(4): 484-516. https://doi.org/10.2475/04.2008.04
      Zhong, Z. Q., Suo, S. T., You, Z. D., et al., 2001. Major Constituents of the Dabie Collisional Orogenic Belt and Partial Melting in the Ultrahigh-Pressure Unit. International Geology Review, 43(3): 226-236. https://doi.org/10.1080/00206810109465010
      Zhu, J., Peng, S.G., Peng, L.H., et al., 2019. Geochronology of Bimodal Volcanic Rocks from Dingyuan Formation in Western Dabie Orogen, Central China: Implications for Extension during Breakup of Rodinia. Earth Science, 44(2): 355-365(in Chinese with English abstract). http://www.researchgate.net/publication/332557958_Geochronology_of_Bimodal_Volcanic_Rocks_from_Dingyuan_Formation_in_Western_Dabie_Orogen_Central_China_Implications_for_Extension_during_Breakup_of_Rodinia
      Zhu, J., Wang, L., Peng S., et al., 2017. U-Pb Zircon Age, Geochemical and Isotopic Characteristics of the Miaoya Syenite and Carbonatite Complex, Central China. Geological Journal, 52(6): 938-954. https://doi.org/10.1002/gj.2859
      Zhu, J., Wu, B., Wang, L.X., et al., 2019. Neoproterozoic Bimodal Volcanic Rocks and Granites in the Western Dabie Area, Northern Margin of Yangtze Block, China: Implications for Extension during the Break-up of Rodinia. International Geology Review, 61(11): 1370-1390. https://doi.org/10.1080/00206814.2018.1512058
      Zhu, X. Y., Chen, F. K., Nie, H., et al., 2014. Neoproterozoic Tectonic Evolution of South Qinling, China: Evidence from Zircon Ages and Geochemistry of the Yaolinghe Volcanic Rocks. Precambrian Research, 245: 115-130. https://doi.org/10.1016/j.precamres.2014.02.005
      蔡志勇, 熊小林, 罗洪, 等, 2007. 武当地块耀岭河群火山岩的时代归属: 单锆石U-Pb年龄的制约. 地质学报, 81(5): 620-625. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200705004.htm
      陈玲, 马昌前, 佘振兵, 等, 2006. 大别山北淮阳构造带柳林辉长岩: 新元古代晚期裂解事件的记录. 地球科学, 31(4): 578-584. http://www.earth-science.net/article/id/1606
      邓乾忠, 李雄伟, 邓喆, 等2013. 再论红安群地层序列与有关问题. 资源环境与工程, 27(2): 125-132. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201302005.htm
      李怀坤, 陆松年, 陈志宏, 等, 2003. 南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学. 地质通报, 22(10): 775-781. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200310004.htm
      凌文黎, 任邦方, 段瑞春, 等, 2007. 南秦岭武当山群、耀岭河群及基性侵入岩群锆石U-Pb同位素年代学及其地质意义. 科学通报, 52(12): 1445-1456. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200712014.htm
      刘贻灿, 李曙光, 古晓锋, 等, 2006. 北淮阳王母观橄榄辉长岩锆石SHRIMP U-Pb年龄及其地质意义. 科学通报, 51(18): 2175-2180. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200618014.htm
      刘贻灿, 刘理湘, 古晓锋, 等, 2010. 大别山北淮阳带西段新元古代浅变质花岗岩的发现及其大地构造意义. 科学通报, 55(24): 2391-2399. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201024006.htm
      毛新武, 陈超, 陈觅, 等, 2016. 鄂北红安群黄麦岭组变沉积岩碎屑锆石年代学及地质意义. 地质科技情报, 35(3): 49-55, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201603006.htm
      徐树桐, 吴维平, 陆益群, 等, 2010. 大别山南部的低级变质岩: 宿松群和张八岭群. 安徽地质, 20(1): 5-13. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ201001005.htm
      薛怀民, 马芳, 宋永勤, 2011. 扬子克拉通北缘随(州)-枣(阳)地区新元古代变质岩浆岩的地球化学和SHRIMP锆石U-Pb年代学研究. 岩石学报, 27(4): 1116-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104021.htm
      叶伯丹, 简平, 许俊文, 等, 1993. 桐柏-大别造山带北坡苏家河地体拼接带及其构成和演化. 武汉: 中国地质大学出版社.
      张超, 马昌前, 2008. 大别山晚中生代巨量岩浆活动的启动: 花岗岩锆石U-Pb年龄和Hf同位素制约. 矿物岩石, 28(4): 71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200804014.htm
      张国伟, 张本仁, 袁学诚, 等, 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社.
      张旗, 马文璞, 金唯俊, 等, 1995. 一个造山后的辉长岩—河南新县王母观岩体的地球化学特征. 地球化学, 24(4): 341-350. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX504.003.htm
      朱江, 彭三国, 彭练红, 等, 2019. 扬子陆块北缘西大别地区定远组双峰式火山岩U-Pb年代学及其地质构造意义. 地球科学, 44(2): 355-365. doi: 10.3799/dqkx.2018.541
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(3)

      Article views (1651) PDF downloads(112) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return