• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 7
    Jul.  2021
    Turn off MathJax
    Article Contents
    Huang Jinou, Xian Yang, Li Wei, Zhang Dazheng, Zhuang Xiaoming, 2021. Hydrogeochemical Evolution of Groundwater Flow System in the Typical Coastal Plain: A Case Study of Hangjiahu Plain. Earth Science, 46(7): 2565-2582. doi: 10.3799/dqkx.2020.230
    Citation: Huang Jinou, Xian Yang, Li Wei, Zhang Dazheng, Zhuang Xiaoming, 2021. Hydrogeochemical Evolution of Groundwater Flow System in the Typical Coastal Plain: A Case Study of Hangjiahu Plain. Earth Science, 46(7): 2565-2582. doi: 10.3799/dqkx.2020.230

    Hydrogeochemical Evolution of Groundwater Flow System in the Typical Coastal Plain: A Case Study of Hangjiahu Plain

    doi: 10.3799/dqkx.2020.230
    • Received Date: 2020-08-04
    • Publish Date: 2021-07-15
    • The hydrogeochemical evolution of groundwater flow system in the coastal plainis a complicated process which is influenced by both ancientseawater intrusion and modern anthropogenic activities. However, at present few of previous studies specially investigated on it.In this study, taking the Hangjiahu Plain as an example, the multivariate statistics and hydrochemical analysis methods are used to interpret the hydrochemical data of 78 water samples from deep confined aquifers. Results show that hydrogeochemicalzones of this typical coastal plain can be classified as the ancient seawater intrusionzone, salinized zone and runoff-discharge zone, with the hydrochemical type of Na-Cl-HCO3, Na-HCO3and Na-Ca-HCO3, and Na-Cl, respectively.The dominant factors of groundwaterhydrogeochemical evolution of this coastal plain were seawater invasion and ion exchange, natural rock dissolution and anthropogenic activities. No obvious groundwater flow system hierarchy was foundin the coastal plain. There is a typical pattern of hydrogeochemical evolutionoccurring. Such evolutionis constituted with the following three stages: (1) the formation stage of original fresh water, (2) the salinization stage by ancientseawater invasion, and (3) the modernseawater invasion stage induced by human over pumping. Moreover, anthropogenic activitieshave replaced natural progresses and become the dominant factor on coastal hydrogeochemical evolution.

       

    • loading
    • Böhlke, J.K., Denver, J.M., 1995. Combined Use of Groundwater Dating, Chemical, and Isotopic Analyses to Resolve the History and Fate of Nitrate Contamination in Two Agricultural Watersheds, Atlantic Coastal Plain, Maryland. Water Resources Research, 31(9): 2319-2339. https://doi.org/10.1029/95wr01584
      Barlow, P.M., Reichard, E.G., 2010. Saltwater Intrusion in Coastal Regions of North America. Hydrogeology Journal, 18(1): 247-260. https://doi.org/10.1007/s10040-009-0514-3
      Cloutier, V., Lefebvre, R., Therrien, R., et al., 2008. Multivariate Statistical Analysis of Geochemical Data as Indicative of the Hydrogeochemical Evolution of Groundwater in a Sedimentary Rock Aquifer System. Journalo f Hydrology, 353(3/4): 294-313. https://doi.org/10.1016/j.jhydrol.2008.02.015
      Davis, J.C., 1973. Statistics and Data Analysis in Geology. John Wiley and Sons Inc, New York.
      El Alfy, M., Lashin, A., Abdalla, F., et al., 2017. Assessing the Hydrogeochemical Processes Affecting Groundwater Pollution in Arid Areas Using an Integration of Geochemical Equilibrium and Multivariate Statistical Techniques. Environmental Pollution, 229(2): 760-770. https://doi.org/10.1016/j.envpol.2017.05.052
      Gibbs, R.J., 1970. Mechanisms Controlling World Water Chemistry. Science, 170(3962): 1088-1090. https://doi.org/10.1126/science.170.3962.1088
      Güler, C., Thyne, G.D., McCray, J.E., et al., 2002. Evaluation of Graphical and Multivariate Statistical Methods for Classification of Water Chemistry Data. Hydrogeology Journal, 10(4): 455-474. https://doi.org/10.1007/s10040-002-0196-6
      Han, D.M., Song, X.F., Currell, M.J., et al., 2014. Chemical and Isotopic Constraints on Evolution of Groundwater Salinization in the Coastal Plain Aquifer of Laizhou Bay, China. Journal of Hydrology, 508(5): 12-27. https://doi.org/10.1016/j.jhydrol.2013.10.040
      Jia, J.Y., Jiang, Y.H., Zhou, X., et al., 2011. A Preliminary Study on Hydrochemical and Isotope Characteristics of Groundwater in Hangjiahu Area. Resources Survey and Environment, 32(2): 150-156 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HSDZ201102010.htm
      Jia, Y.F., Xi, B.D., Jiang, Y.H., et al., 2018. Distribution, Formation and Human-Induced Evolution of Geogenic Contaminated Groundwater in China: A Review. Science of The Total Environment, 643(22): 967-993. https://doi.org/10.1016/j.scitotenv.2018.06.201
      Liu, S.X., Shen, H.Z., Zhao, J.K., et al., 2006. Geo-Environmental Effects since the Beginning of Groundwater Exploitation Restriction in the ZhejiangCoastal Plain. Journal of Geological Hazards and Environment Preservation, (2): 39-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZHB201302007.htm
      Lin, X.B., 2007. Study on the Groundwater Environmental Isotopes in theHangjiahu Region(Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      Liang, X., Zhang, R.Q., Jin, M.G., 2015. GroundwaterFlow System: Theory, Application and Investigation. Geology Press, Beijing(in Chinese).
      Li, C.S., Wu, X.C., Sun, B., et al., 2018. Hydrochemical Characteristics and Formation Mechanism of Geothermal Water in Northern Ji'nan. Earth Science, 43(S1): 317-329 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1027.htm
      Mandilaras, D., Lambrakis, N., Stamatis, G., 2008. The Role of Bromide and Iodide Ions in the Salinization Mapping of the Aquifer of Glafkos River Basin (Northwest Achaia, Greece). Hydrological Processes, 22(5): 611-622. https://doi.org/10.1002/hyp.6627
      Ma, J.Z., Ding, Z.Y., Edmunds, W.M., et al., 2009. Limits to Recharge of Groundwater from Tibetan Plateau to the Gobi Desert, Implications for Water Management in the Mountain Front. Journal of Hydrology, 364(1/2): 128-141. https://doi.org/10.1016/j.jhydrol.2008.10.010
      Piper, A.M., 1944. A Graphic Procedure in the Geochemical Interpretation of Water-Analyses. Transactions, American Geophysical Union, 25(6): 914. https://doi.org/10.1029/tr025i006p00914
      Szabo, Z., Rice, D.E., Plummer, L.N., et al., 1996. Age Dating of Shallow Groundwater with Chlorofluorocarbons, Tritium/Helium: 3, and Flow Path Analysis, Southern New Jersey Coastal Plain. Water Resources Research, 32(4): 1023-1038. https://doi.org/10.1029/96wr00068
      Su, C.L., Zhang, Y., Ma, Y.H., et al., 2019. Hydrochemical Evolution Processes of Karst Groundwater in Guiyang City: Evidences from Hydrochemistry and 87Sr/86Sr Ratios. Earth Science, 44(9): 2829-2838(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909002.htm
      Tóth, J., 1963. A Theoretical Analysis of Groundwater Flow in Small Drainage Basins. Journal of Geophysical Research, 68(16): 4795-4812. https://doi.org/10.1029/jz068i016p04795
      Wang, P.X., Min, Q.B., Bian, Y.H., 1981. Strata of Quaternary Transgressions in East China: A Preliminary Study. Acta Geologica Sinica, (1): 3-15 (in Chinese with English abstract). http://www.researchgate.net/publication/284673460_Strata_of_Quaternary_transgressions_in_east_China_A_prelinimary_study
      Weng, H.X., Qin, Y. C., Chen, X. H., 2007. Elevated Iron and Manganese Concentrations in Groundwater Derived from the Holocene Transgression in the Hang-Jia-Hu Plain, China. Hydrogeology Journal, 15(4): 715-726. https://doi.org/10.1007/s10040-006-0119-z
      Wang, P., Yu, J.J., Zhang, Y.C., et al., 2013. Groundwater Recharge and Hydrogeochemical Evolution in the Ejina Basin, Northwest China. Journal of Hydrology, 476(14): 72-86. https://doi.org/10.1016/j.jhydrol.2012.10.049
      Wang, H., Jiang, X.W., Wan, L., et al., 2015. Hydrogeochemical Characterization of Groundwater Flow Systems in the Discharge Area of a River Basin. Journal of Hydrology, 527(5): 433-441. https://doi.org/10.1016/j.jhydrol.2015.04.063
      Wang, J.Y., Wang, J.L., Jin, M.G., 2017. Hydrochemical Characteristics and Formation Causes of Karst Water in Jinan Spring Catchment. Earth Science, 42(5): 821-831 (in Chinese with English abstract).
      Wang, J.J., Liang, X., Liu, Y.F., et al., 2019a. Hydrogeochemical Evolution along Groundwater Flow Paths in the Manas River Basin, Northwest China. Ground Water, 57(4): 575-589. https://doi.org/10.1111/gwat.12829
      Wang, Y.X., Pi, K.F., Fendorf, S., et al., 2019b. Sedimentogenesis and Hydrobiogeochemistry of High Arsenic Late Pleistocene-Holocene Aquifer Systems. Earth-Science Reviews, 189(Q04006): 79-98. https://doi.org/10.1016/j.earscirev.2017.10.007
      Xu, Y.S., Shen, J.S., Zhou, A.N., et al., 2018. Geological and Hydrogeological Environment with Geohazards during Underground Construction in Hangzhou: A Review. Arabian Journal of Geosciences, 11(18): 544. https://doi.org/10.1007/s12517-018-3894-7
      Xiang, D.J., Li, H.W., Liu, X.Y., 2005. Applied Multivariate Statistical Analysis. China University of Geosciences Press, Wuhan, 100-180(in Chinese).
      Yan, Z.W., Zhang, Z.W., 2009. The Effect of Chloride on the Solubility of Calcite and Dolomite. Hydrogeology and Engineering Geology, 36(1): 113-118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200901029.htm
      Zhao, J.K., Wu, M.J., Liu, S.X., et al., 2006. The Relation between Groundwater Exploitation and Land Subsidence in the Coast Plain of Zhejiang Province. Geological Journal of China Universities, 12(2): 185-194 (in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=22137961
      Zhang, R.Q., Liang, X., Jin, M.G., 2013. The Evolution of Groundwater Flow System in the Quaternary of Hebei Plain since the Last Glacial Maximum. Earth ScienceFrontiers, 20(3): 217-226(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201303026.htm
      Zhu, B.Q., Wang, Y. L., 2016. Statistical Study to Identify the Key Factors Governing Ground Water Recharge in the Watersheds of the Arid Central Asia. Environmental Monitoring and Assessment, 188(1): 66. https://doi.org/10.1007/s10661-015-5075-4
      Zhu, B.Q., Wang, X.M., Rioual, P., 2017. Multivariate Indications between Environment and Ground Water Recharge in a Sedimentary Drainage Basin in Northwestern China. Journal of Hydrology, 549(2): 92-113. https://doi.org/10.1016/j.jhydrol.2017.03.058
      Zhu, G.F., Su, Y.H., Feng, Q., 2008. The Hydrochemical Characteristics and Evolution of Groundwater and Surface Water in the Heihe River Basin, Northwest China. Hydrogeology Journal, 16(1): 167-182. https://doi.org/10.1007/s10040-007-0216-7
      Zhang, X., Lin, C.M., Yang S.Y., 2018. Provenance for the Late Quaternary Qiantang River Incised-Valley Fill. Journal of Palaeogeography, 20(5): 877-892 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=GDLX201805012&dbcode=CJFD&year=2018&dflag=pdfdown
      贾军元, 姜月华, 周迅, 等, 2011. 杭嘉湖地区水化学及同位素特征初步分析. 资源调查与环境, 32(2): 150-156. doi: 10.3969/j.issn.1671-4814.2011.02.009
      刘思秀, 沈慧珍, 赵建康, 等, 2013. 浙江省沿海平原地下水控采后的地质环境效应. 地质灾害与环境保护, (2): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201302007.htm
      林晓波, 2007. 杭嘉湖地区地下水环境同位素研究(硕士毕业论文). 北京: 中国地质科学院.
      梁杏, 张人权, 靳孟贵, 2015. 地下水流系统: 理论应用调查. 北京: 地质出版社.
      李常锁, 武显仓, 孙斌, 等, 2018. 济南北部地热水水化学特征及其形成机理. 地球科学, 43(增刊1): 317-329. doi: 10.3799/dqkx.2018.206
      苏春利, 张雅, 马燕华, 等, 2019. 贵阳市岩溶地下水水化学演化机制: 水化学和锶同位素证据. 地球科学, (9): 2829-2838. doi: 10.3799/dqkx.2019.214
      汪品先, 闵秋宝, 卞云华, 等, 1981. 我国东部第四纪海侵地层的初步研究. 地质学报, (1): 3-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198101000.htm
      王珺瑜, 王家乐, 靳孟贵, 2017. 济南泉域岩溶水水化学特征及其成因. 地球科学, 42(5): 821-831. doi: 10.3799/dqkx.2017.070
      向东进, 李宏伟, 刘小雅, 2005. 实用多元统计分析. 武汉: 中国地质大学出版社.
      闫志为, 张志卫, 2009. 氯化物对方解石和白云石矿物溶解度的影响. 水文地质工程地质, 36(1): 113-118. doi: 10.3969/j.issn.1000-3665.2009.01.025
      赵建康, 吴孟杰, 刘思秀, 等, 2006. 浙江省滨海平原地下水开采与地面沉降. 高校地质学报, 12(2): 185-194. doi: 10.3969/j.issn.1006-7493.2006.02.005
      张人权, 梁杏, 靳孟贵, 2013. 末次盛冰期以来河北平原第四系地下水流系统的演变. 地学前缘, (3): 219-228. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303026.htm
      张霞, 林春明, 杨守业, 等, 2018. 晚第四纪钱塘江下切河谷充填物物源特征. 古地理学报, 20(5): 877-892. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201805012.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(5)

      Article views (2998) PDF downloads(105) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return