Citation: | Chen Bing, Xiong Fuhao, Ma Changqian, Chen Yue, Huang Hu, 2021. Coupling Relation between Magma Mixing and Igneous Petrological Diversity: An Example of Bairiqili Felsic Pluton in East Kunlun Orogen. Earth Science, 46(6): 2057-2072. doi: 10.3799/dqkx.2020.241 |
Altherr, R., Siebel, W., 2002. I-Type Plutonism in a Continental Back-Arc Setting: Miocene Granitoids and Monzonites from the Central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4): 397-415. https://doi.org/10.1007/s00410-002-0352-y
|
Anderson, J.L., Barth, A.P., Wooden, J.L., et al., 2008. Thermometers and Thermobarometers in Granitic Systems. Reviews in Mineralogy and Geochemistry, 69(1): 121-142. https://doi.org/10.2138/rmg.2008.69.4
|
Ba, J., Chen, N.S., Wang, Q.Y., et al., 2012. Nd-Sr-Pb Isotopic Compositions of Cordierite Granite on Southern Margin of the Qaidam Block, NW China, and Constraints on Its Petrogenesis, Tectonic Affinity of Source Region and Tectonic Implications. Earth Science, 37(Suppl. 1): 80-92(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX2012S1010.htm
|
Bachmann, O., Huber, C., 2019. The Inner Workings of Crustal Distillation Columns; the Physical Mechanisms and Rates Controlling Phase Separation in Silicic Magma Reservoirs. Journal of Petrology, 60(1): 3-18. https://doi.org/10.1093/petrology/egy103
|
Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 80(1-4): 155-177. https://doi.org/10.1016/j.lithos.2004.05.010
|
Bergantz, G.W., Schleicher, J.M., Burgisser, A., et al., 2015. Open-System Dynamics and Mixing in Magma Mushes. Nature Geoscience, 8(10): 793-796. https://doi.org/10.1038/ngeo2534
|
Burgisser, A., Bergantz, G.W., 2011. A Rapid Mechanism to Remobilize and Homogenize Highly Crystalline Magma Bodies. Nature, 471(7337): 212-215. https://doi.org/10.1038/nature09799
|
Cashman, K.V., Sparks, R.S.J., Blundy, J.D., et al., 2017. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science, 355(6331): eaag3055. https://doi.org/10.1126/science.aag3055
|
Chappell, B.W., White, A.J.R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173-174. http://ci.nii.ac.jp/naid/80013136601/
|
Chappell, B.W., White, A.J.R., Wyborn, D., et al., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6): 1111-1138. https://doi.org/10.1093/petrology/28.6.1111
|
Chauvel, C., Marini, J.C., Plank, T., et al., 2009. Hf-Nd Input Flux in the Izu-Mariana Subduction Zone and Recycling of Subducted Material in the Mantle. Geochemistry, Geophysics, Geosystems, 10(1): Q01001. https://doi.org/10.1029/2008gc002101 doi: 10.1029/2008GC002101/abstract
|
Chen, Y.X., Pei, X.Z., Li, R.B., et al., 2011. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt. Geoscience, 25(3): 510-521(in Chinese with English abstract). http://www.researchgate.net/publication/285650077_Zircon_U-Pb_age_of_Xiaomiao_Formation_of_Proterozoic_in_the_eastern_section_of_the_East_Kunlun_Orogenic_Belt
|
Clemens, J.D., 2018. Granitic Magmas with I-Type Affinities, from Mainly Metasedimentary Sources: The Harcourt Batholith of Southeastern Australia. Contributions to Mineralogy and Petrology, 173(11): 1-20. https://doi.org/10.1007/s00410-018-1520-z doi: 10.1007%2Fs00410-018-1520-z.pdf
|
Costa, F., Coogan, L.A., Chakraborty, S., et al., 2010. The Time Scales of Magma Mixing and Mingling Involving Primitive Melts and Melt-Mush Interaction at Mid-Ocean Ridges. Contributions to Mineralogy and Petrology, 159(3): 371-387. https://doi.org/10.1007/s00410-009-0432-3
|
Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
|
Glazner, A.F., Bartley, J.M., Coleman, D.S., et al., 2020. Aplite Diking and Infiltration: A Differentiation Mechanism Restricted to Plutonic Rocks. Contributions to Mineralogy and Petrology, 175(4): 1-17. https://doi.org/10.1007/s00410-020-01677-1
|
Guo, A.L., Zhang, G.W., Sun, Y.G., et al., 2007. Sr-Nd-Pb Isotopic Geochemistry of Late-Paleozoic Mafic Volcanic Rocks in the Surrounding Areas of the Gonghe Basin, Qinghai Province and Geological Implications. Acta Petrologica Sinica, 23(4): 747-754(in Chinese with English abstract).
|
Hammerli, J., Kemp, A.I.S., Shimura, T., et al., 2018. Generation of I-Type Granitic Rocks by Melting of Heterogeneous Lower Crust. Geology, 46(10): 907-910. https://doi.org/10.1130/g45119.1 doi: 10.1130/G45119.1
|
Hanyu, T., Tatsumi, Y., Nakai, S., et al., 2006. Contribution of Slab Melting and Slab Dehydration to Magmatism in the NE Japan Arc for the Last 25 Ma: Constraints from Geochemistry. Geochemistry, Geophysics, Geosystems, 7(8): Q08002. https://doi.org/10.1029/2005GC001220 doi: 10.1029/2005GC001220
|
Hoffmann, J.E., Kröner, A., Hegner, E., et al., 2016. Source Composition, Fractional Crystallization and Magma Mixing Processes in the 3.48-3.43 Ga Tsawela Tonalite Suite (Ancient Gneiss Complex, Swaziland): Implications for Palaeoarchaean Geodynamics. Precambrian Research, 276: 43-66. https://doi.org/10.1016/j.precamres.2016.01.026
|
Hu, C.B., Li, M., Zha, X.F., et al., 2018. Genesis and Geological Significance of Late Paleozoic Mantle-Derived Magmatism in Qimantag, East Kunlun: A Case Study of Intrusion in Yingzhuagou. Earth Science, 43(12): 4334-4349. (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812005.htm
|
Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/c2ja30078h
|
Jagoutz, O., Kelemen, P.B., 2015. Role of Arc Processes in the Formation of Continental Crust. Annual Review of Earth and Planetary Sciences, 43(1): 363-404. https://doi.org/10.1146/annurev-earth-040809-152345
|
Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., 1997. Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3): 623-651. https://doi.org/10.1127/ejm/9/3/0623
|
Li, R.B., Pei, X.Z., Pei, L., et al., 2018. The Early Triassic Andean-Type Halagatu Granitoids Pluton in the East Kunlun Orogen, Northern Tibet Plateau: Response to the Northward Subduction of the Paleo-Tethys Ocean. Gondwana Research, 62: 212-226. https://doi.org/10.1016/j.gr.2018.03.005
|
Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
|
Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
Ma, C.Q., Xiong, F.H., Yin, S., et al., 2015. Intensity and Cyclicity of Orogenic Magmatism: An Example from a Paleo-Tethyan Granitoid Batholith, Estern Kunlun, Northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31 (12): 3555-3568(in Chinese with English abstract). http://or.nsfc.gov.cn/handle/00001903-5/460848
|
Mo, X.X., 2011. Magmatism and Evolution of the Tibetan Plateau. Geological Journal of China Universities, 17(3): 351-367 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253565646.html
|
Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414(in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011AGUFM.T51D2370M
|
Pearce, J.A., Norry, M.J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/BF00375192
|
Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
|
Petford, N., Cruden, A.R., McCaffrey, K.J.W., et al., 2000. Granite Magma Formation, Transport and Emplacement in the Earth's Crust. Nature, 408: 669-673. https://doi.org/10.1038/35047000
|
Qin, Z.W., Ma, C.Q., Fu, J.M., et al., 2018. The Origin of Mafic Enclaves in Xiangjia Granitic Pluton of East Kunlun Orogenic Belt: Evidence from Petrography and Geochemistry. Earth Science, 43(7): 2420-2437(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201807016.htm
|
Roger, F., Arnaud, N., Gilder, S., et al., 2003. Geochronological and Geochemical Constraints on Mesozoic Suturing in East Central Tibet. Tectonics, 22(4): 1037. https://doi.org/10.1029/2002TC001466 doi: 10.1029/2002TC001466
|
Rudnick, R., Gao, S., 2003. The Role of Lower Crustal Recycling in Continent Formation. Geochimica et Cosmochimica Acta, 67 (Suppl. ): 1-10. http://adsabs.harvard.edu/abs/2003GeCAS..67Q.403R
|
Schiano, P., Monzier, M., Eissen, J.P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312. https://doi.org/10.1007/s00410-009-0478-2
|
Schmidt, M.W., 1992. Amphibole Composition in Tonalite as a Function of Pressure: An Experimental Calibration of the Al-in-Hornblende Barometer. Contributions to Mineralogy and Petrology, 110(2-3): 304-310. https://doi.org/10.1007/BF00310745
|
Spandler, C., Pirard, C., 2013. Element Recycling from Subducting Slabs to Arc Crust: A Review. Lithos, 170-171: 208-223. https://doi.org/10.1016/j.lithos.2013.02.016
|
Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
|
Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
|
Wang, X.L., 2017. Some New Research Progresses and Main Scientific Problems of Granitic Rocks. Acta Petrologica Sinica, 33(5): 1445-1458(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201705005.htm
|
Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49 (16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589
|
Xia, R., Wang, C.M., Qing, M., et al., 2015. Zircon U-Pb Dating, Geochemistry and Sr-Nd-Pb-Hf-O Isotopes for the Nan'getan Granodiorites and Mafic Microgranular Enclaves in the East Kunlun Orogen: Record of Closure of the Paleo-Tethys. Lithos, 234-235: 47-60. https://doi.org/10.1016/j.lithos.2015.07.018
|
Xiong, F.H., Ma, C.Q., Chen, B., et al., 2019. Intermediate-Mafic Dikes in the East Kunlun Orogen, Northern Tibetan Plateau: A Window into Paleo-Arc Magma Feeding System. Lithos, 340-341: 152-165. https://doi.org/10.1016/j.lithos.2019.05.012
|
Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2011a. Zircon LA-ICP-MS U-Pb Dating of Bairiqili Gabbro Pluton in East Kunlun Orogenic Belt and Its Geological Significance. Geological Bulletin of China, 30(8): 1196-1202(in Chinese with English abstract). http://www.researchgate.net/publication/283869233_Zircon_LA-ICP-MS_U-Pb_dating_of_Bairiqili_gabbro_pluton_in_East_Kunlun_orogenic_belt_and_its_geological_significance
|
Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2011b. LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt. Acta Petrologica Sinica, 27 (11): 3350-3364(in Chinese with English abstract).
|
Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2012. The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere. Mineralogy and Petrology, 104(3-4): 211-224. https://doi.org/10.1007/s00710-011-0187-1
|
Xu, W.J., Xu, X.S., Wang, Y.J., et al., 2020. The Effects of Mafic-Felsic Magma Interaction on Magma Diversity: Insights from an Early Paleozoic Hornblendite-Quartz Monzonite Suite in the South China Block. Mineralogy and Petrology, 114(1): 71-90. https://doi.org/10.1007/s00710-019-00692-w
|
Yin, H.F., Zhang, K.X., 1997. Characteristics of the Eastern Kunlun Orogenic Belt. Earth Science, 22 (4): 339-342(in Chinese with English abstract). http://www.researchgate.net/publication/306203698_Characteristics_of_the_eastern_Kunlun_orogenic_belt
|
Zhang, J.Y., Ma, C.Q., Zhang, C., et al., 2014. Fractional Crystallization and Magma Mixing: Evidence from Porphyritic Diorite-Granodiorite Dykes and Mafic Microgranular Enclaves within the Zhoukoudian Pluton, Beijing. Mineralogy and Petrology, 108(6): 777-800. https://doi.org/10.1007/s00710-014-0336-4
|
Zhao, X., Fu, L.B., Wei, J.H., et al., 2018. Geochemical Characteristics of An'nage Hornblende Gabbro from East Kunlun Orogenic Belt and Its Constraints on Evolution of Paleo-Tethys Ocean. Earth Science, 43(2): 354-370(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201802002.htm
|
巴金, 陈能松, 王勤燕, 等, 2012. 柴南缘堇青石花岗岩的Nd-Sr-Pb同位素组成及其对岩石成因、源区构造属性和构造演化的启示. 地球科学, 37(增刊1): 80-92. doi: 10.3799/dqkx.2012.S1.008
|
陈有炘, 裴先治, 李瑞保, 等, 2011. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄. 现代地质, 25(3): 510-521. doi: 10.3969/j.issn.1000-8527.2011.03.013
|
郭安林, 张国伟, 孙延贵, 等, 2007. 青海省共和盆地周缘晚古生代镁铁质火山岩Sr-Nd-Pb同位素地球化学及其地质意义. 岩石学报, 23(4): 747-754. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200704007.htm
|
胡朝斌, 李猛, 查显锋, 等, 2018. 东昆仑祁漫塔格晚古生代末期幔源岩浆活动成因及地质意义: 以鹰爪沟岩体为例. 地球科学, 43(12): 4334-4349. doi: 10.3799/dqkx.2018.120
|
马昌前, 熊富浩, 尹烁, 等, 2015. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555-3568. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512004.htm
|
莫宣学, 2011. 岩浆作用与青藏高原演化. 高校地质学报, 17(3): 351-367. doi: 10.3969/j.issn.1006-7493.2011.03.001
|
莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
|
秦拯纬, 马昌前, 付建明, 等, 2018. 东昆仑香加花岗质岩体中镁铁质包体成因: 岩相学及地球化学证据. 地球科学, 43(7): 2420-2437. doi: 10.3799/dqkx.2018.549
|
王孝磊, 2017. 花岗岩研究的若干新进展与主要科学问题. 岩石学报, 33(5): 1445-1458. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705005.htm
|
吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
|
熊富浩, 马昌前, 张金阳, 等, 2011a. 东昆仑造山带白日其利辉长岩体LA-ICP-MS锆石U-Pb年龄及地质意义. 地质通报, 30(8): 1196-1202. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108003.htm
|
熊富浩, 马昌前, 张金阳, 等, 2011b. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学. 岩石学报, 27(11): 3350-3364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111016.htm
|
殷鸿福, 张克信, 1997. 东昆仑造山带的一些特点. 地球科学, 22(4): 339-342. doi: 10.3321/j.issn:1000-2383.1997.04.001
|
赵旭, 付乐兵, 魏俊浩, 等, 2018. 东昆仑按纳格角闪辉长岩体地球化学特征及其对古特提斯洋演化的制约. 地球科学, 43(2): 354-370. doi: 10.3799/dqkx.2018.020
|
![]() |
![]() |