• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 6
    Jun.  2021
    Turn off MathJax
    Article Contents
    Chen Bing, Xiong Fuhao, Ma Changqian, Chen Yue, Huang Hu, 2021. Coupling Relation between Magma Mixing and Igneous Petrological Diversity: An Example of Bairiqili Felsic Pluton in East Kunlun Orogen. Earth Science, 46(6): 2057-2072. doi: 10.3799/dqkx.2020.241
    Citation: Chen Bing, Xiong Fuhao, Ma Changqian, Chen Yue, Huang Hu, 2021. Coupling Relation between Magma Mixing and Igneous Petrological Diversity: An Example of Bairiqili Felsic Pluton in East Kunlun Orogen. Earth Science, 46(6): 2057-2072. doi: 10.3799/dqkx.2020.241

    Coupling Relation between Magma Mixing and Igneous Petrological Diversity: An Example of Bairiqili Felsic Pluton in East Kunlun Orogen

    doi: 10.3799/dqkx.2020.241
    • Received Date: 2020-07-07
    • Publish Date: 2021-06-15
    • How crust-mantle magma interaction controls the petrological diversity of the felsic igneous rocks is one of the key scientific issues in petrology research. In this study it takes the Bairiqili felsic pluton which is characterized by its various rock types, as well as its mafic microgranular enclaves (MMEs) in East Kunlun as the research object, and presents its zircon U-Pb chronology, mineralogy, whole-rock geochemistry and Sr-Nd-Hf isotopic data to discuss the key scientific issue. LA-ICPMS zircon U-Pb geochronology indicates that the MMEs (247.8±2.0 Ma), monzogranite (247.5±1.4 Ma), granodiorite (248.8±2.1 Ma) and quartz diorite (248.8±1.5 Ma) all emplaced and crystallized in Early Triassic. Petrographic and mineralogical studies show that the petrogenesis of the felsic rocks and MMEs is closely related to the crust-mantle magma mixing or mingling. Elemental and Sr-Nd-Hf isotopical geochemistry reveals that the mafic magma was originated from partial melting of the enriched mantle which was metasomatized by subduction-related fluid, while the felsic end-member magma was derived from partial melting of the ancient metagreywackes. This study proposes that the mantle-derived mafic magma firstly intruded into the felsic crystal mushy magma chamber, promoting the rejuvenation of this felsic crystal mush. Subsequently, the mixing and mingling interaction occurred between the crust and mantle end-member magmas in different proportions and in different ways, thus formed a variety of igneous rocks including mafic dyke, MMEs, quartz diorite and granodiorite. Crust-mantle magma interaction in crystal mushy state is an important way to control the petrological diversity of felsic rocks and the growth and evolution of continental crust in East Kunlun.

       

    • loading
    • Altherr, R., Siebel, W., 2002. I-Type Plutonism in a Continental Back-Arc Setting: Miocene Granitoids and Monzonites from the Central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4): 397-415. https://doi.org/10.1007/s00410-002-0352-y
      Anderson, J.L., Barth, A.P., Wooden, J.L., et al., 2008. Thermometers and Thermobarometers in Granitic Systems. Reviews in Mineralogy and Geochemistry, 69(1): 121-142. https://doi.org/10.2138/rmg.2008.69.4
      Ba, J., Chen, N.S., Wang, Q.Y., et al., 2012. Nd-Sr-Pb Isotopic Compositions of Cordierite Granite on Southern Margin of the Qaidam Block, NW China, and Constraints on Its Petrogenesis, Tectonic Affinity of Source Region and Tectonic Implications. Earth Science, 37(Suppl. 1): 80-92(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX2012S1010.htm
      Bachmann, O., Huber, C., 2019. The Inner Workings of Crustal Distillation Columns; the Physical Mechanisms and Rates Controlling Phase Separation in Silicic Magma Reservoirs. Journal of Petrology, 60(1): 3-18. https://doi.org/10.1093/petrology/egy103
      Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 80(1-4): 155-177. https://doi.org/10.1016/j.lithos.2004.05.010
      Bergantz, G.W., Schleicher, J.M., Burgisser, A., et al., 2015. Open-System Dynamics and Mixing in Magma Mushes. Nature Geoscience, 8(10): 793-796. https://doi.org/10.1038/ngeo2534
      Burgisser, A., Bergantz, G.W., 2011. A Rapid Mechanism to Remobilize and Homogenize Highly Crystalline Magma Bodies. Nature, 471(7337): 212-215. https://doi.org/10.1038/nature09799
      Cashman, K.V., Sparks, R.S.J., Blundy, J.D., et al., 2017. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science, 355(6331): eaag3055. https://doi.org/10.1126/science.aag3055
      Chappell, B.W., White, A.J.R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173-174. http://ci.nii.ac.jp/naid/80013136601/
      Chappell, B.W., White, A.J.R., Wyborn, D., et al., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6): 1111-1138. https://doi.org/10.1093/petrology/28.6.1111
      Chauvel, C., Marini, J.C., Plank, T., et al., 2009. Hf-Nd Input Flux in the Izu-Mariana Subduction Zone and Recycling of Subducted Material in the Mantle. Geochemistry, Geophysics, Geosystems, 10(1): Q01001. https://doi.org/10.1029/2008gc002101 doi: 10.1029/2008GC002101/abstract
      Chen, Y.X., Pei, X.Z., Li, R.B., et al., 2011. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt. Geoscience, 25(3): 510-521(in Chinese with English abstract). http://www.researchgate.net/publication/285650077_Zircon_U-Pb_age_of_Xiaomiao_Formation_of_Proterozoic_in_the_eastern_section_of_the_East_Kunlun_Orogenic_Belt
      Clemens, J.D., 2018. Granitic Magmas with I-Type Affinities, from Mainly Metasedimentary Sources: The Harcourt Batholith of Southeastern Australia. Contributions to Mineralogy and Petrology, 173(11): 1-20. https://doi.org/10.1007/s00410-018-1520-z doi: 10.1007%2Fs00410-018-1520-z.pdf
      Costa, F., Coogan, L.A., Chakraborty, S., et al., 2010. The Time Scales of Magma Mixing and Mingling Involving Primitive Melts and Melt-Mush Interaction at Mid-Ocean Ridges. Contributions to Mineralogy and Petrology, 159(3): 371-387. https://doi.org/10.1007/s00410-009-0432-3
      Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
      Glazner, A.F., Bartley, J.M., Coleman, D.S., et al., 2020. Aplite Diking and Infiltration: A Differentiation Mechanism Restricted to Plutonic Rocks. Contributions to Mineralogy and Petrology, 175(4): 1-17. https://doi.org/10.1007/s00410-020-01677-1
      Guo, A.L., Zhang, G.W., Sun, Y.G., et al., 2007. Sr-Nd-Pb Isotopic Geochemistry of Late-Paleozoic Mafic Volcanic Rocks in the Surrounding Areas of the Gonghe Basin, Qinghai Province and Geological Implications. Acta Petrologica Sinica, 23(4): 747-754(in Chinese with English abstract).
      Hammerli, J., Kemp, A.I.S., Shimura, T., et al., 2018. Generation of I-Type Granitic Rocks by Melting of Heterogeneous Lower Crust. Geology, 46(10): 907-910. https://doi.org/10.1130/g45119.1 doi: 10.1130/G45119.1
      Hanyu, T., Tatsumi, Y., Nakai, S., et al., 2006. Contribution of Slab Melting and Slab Dehydration to Magmatism in the NE Japan Arc for the Last 25 Ma: Constraints from Geochemistry. Geochemistry, Geophysics, Geosystems, 7(8): Q08002. https://doi.org/10.1029/2005GC001220 doi: 10.1029/2005GC001220
      Hoffmann, J.E., Kröner, A., Hegner, E., et al., 2016. Source Composition, Fractional Crystallization and Magma Mixing Processes in the 3.48-3.43 Ga Tsawela Tonalite Suite (Ancient Gneiss Complex, Swaziland): Implications for Palaeoarchaean Geodynamics. Precambrian Research, 276: 43-66. https://doi.org/10.1016/j.precamres.2016.01.026
      Hu, C.B., Li, M., Zha, X.F., et al., 2018. Genesis and Geological Significance of Late Paleozoic Mantle-Derived Magmatism in Qimantag, East Kunlun: A Case Study of Intrusion in Yingzhuagou. Earth Science, 43(12): 4334-4349. (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812005.htm
      Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/c2ja30078h
      Jagoutz, O., Kelemen, P.B., 2015. Role of Arc Processes in the Formation of Continental Crust. Annual Review of Earth and Planetary Sciences, 43(1): 363-404. https://doi.org/10.1146/annurev-earth-040809-152345
      Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., 1997. Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3): 623-651. https://doi.org/10.1127/ejm/9/3/0623
      Li, R.B., Pei, X.Z., Pei, L., et al., 2018. The Early Triassic Andean-Type Halagatu Granitoids Pluton in the East Kunlun Orogen, Northern Tibet Plateau: Response to the Northward Subduction of the Paleo-Tethys Ocean. Gondwana Research, 62: 212-226. https://doi.org/10.1016/j.gr.2018.03.005
      Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Ma, C.Q., Xiong, F.H., Yin, S., et al., 2015. Intensity and Cyclicity of Orogenic Magmatism: An Example from a Paleo-Tethyan Granitoid Batholith, Estern Kunlun, Northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31 (12): 3555-3568(in Chinese with English abstract). http://or.nsfc.gov.cn/handle/00001903-5/460848
      Mo, X.X., 2011. Magmatism and Evolution of the Tibetan Plateau. Geological Journal of China Universities, 17(3): 351-367 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253565646.html
      Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414(in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011AGUFM.T51D2370M
      Pearce, J.A., Norry, M.J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/BF00375192
      Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
      Petford, N., Cruden, A.R., McCaffrey, K.J.W., et al., 2000. Granite Magma Formation, Transport and Emplacement in the Earth's Crust. Nature, 408: 669-673. https://doi.org/10.1038/35047000
      Qin, Z.W., Ma, C.Q., Fu, J.M., et al., 2018. The Origin of Mafic Enclaves in Xiangjia Granitic Pluton of East Kunlun Orogenic Belt: Evidence from Petrography and Geochemistry. Earth Science, 43(7): 2420-2437(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201807016.htm
      Roger, F., Arnaud, N., Gilder, S., et al., 2003. Geochronological and Geochemical Constraints on Mesozoic Suturing in East Central Tibet. Tectonics, 22(4): 1037. https://doi.org/10.1029/2002TC001466 doi: 10.1029/2002TC001466
      Rudnick, R., Gao, S., 2003. The Role of Lower Crustal Recycling in Continent Formation. Geochimica et Cosmochimica Acta, 67 (Suppl. ): 1-10. http://adsabs.harvard.edu/abs/2003GeCAS..67Q.403R
      Schiano, P., Monzier, M., Eissen, J.P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312. https://doi.org/10.1007/s00410-009-0478-2
      Schmidt, M.W., 1992. Amphibole Composition in Tonalite as a Function of Pressure: An Experimental Calibration of the Al-in-Hornblende Barometer. Contributions to Mineralogy and Petrology, 110(2-3): 304-310. https://doi.org/10.1007/BF00310745
      Spandler, C., Pirard, C., 2013. Element Recycling from Subducting Slabs to Arc Crust: A Review. Lithos, 170-171: 208-223. https://doi.org/10.1016/j.lithos.2013.02.016
      Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
      Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
      Wang, X.L., 2017. Some New Research Progresses and Main Scientific Problems of Granitic Rocks. Acta Petrologica Sinica, 33(5): 1445-1458(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201705005.htm
      Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49 (16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589
      Xia, R., Wang, C.M., Qing, M., et al., 2015. Zircon U-Pb Dating, Geochemistry and Sr-Nd-Pb-Hf-O Isotopes for the Nan'getan Granodiorites and Mafic Microgranular Enclaves in the East Kunlun Orogen: Record of Closure of the Paleo-Tethys. Lithos, 234-235: 47-60. https://doi.org/10.1016/j.lithos.2015.07.018
      Xiong, F.H., Ma, C.Q., Chen, B., et al., 2019. Intermediate-Mafic Dikes in the East Kunlun Orogen, Northern Tibetan Plateau: A Window into Paleo-Arc Magma Feeding System. Lithos, 340-341: 152-165. https://doi.org/10.1016/j.lithos.2019.05.012
      Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2011a. Zircon LA-ICP-MS U-Pb Dating of Bairiqili Gabbro Pluton in East Kunlun Orogenic Belt and Its Geological Significance. Geological Bulletin of China, 30(8): 1196-1202(in Chinese with English abstract). http://www.researchgate.net/publication/283869233_Zircon_LA-ICP-MS_U-Pb_dating_of_Bairiqili_gabbro_pluton_in_East_Kunlun_orogenic_belt_and_its_geological_significance
      Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2011b. LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt. Acta Petrologica Sinica, 27 (11): 3350-3364(in Chinese with English abstract).
      Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2012. The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere. Mineralogy and Petrology, 104(3-4): 211-224. https://doi.org/10.1007/s00710-011-0187-1
      Xu, W.J., Xu, X.S., Wang, Y.J., et al., 2020. The Effects of Mafic-Felsic Magma Interaction on Magma Diversity: Insights from an Early Paleozoic Hornblendite-Quartz Monzonite Suite in the South China Block. Mineralogy and Petrology, 114(1): 71-90. https://doi.org/10.1007/s00710-019-00692-w
      Yin, H.F., Zhang, K.X., 1997. Characteristics of the Eastern Kunlun Orogenic Belt. Earth Science, 22 (4): 339-342(in Chinese with English abstract). http://www.researchgate.net/publication/306203698_Characteristics_of_the_eastern_Kunlun_orogenic_belt
      Zhang, J.Y., Ma, C.Q., Zhang, C., et al., 2014. Fractional Crystallization and Magma Mixing: Evidence from Porphyritic Diorite-Granodiorite Dykes and Mafic Microgranular Enclaves within the Zhoukoudian Pluton, Beijing. Mineralogy and Petrology, 108(6): 777-800. https://doi.org/10.1007/s00710-014-0336-4
      Zhao, X., Fu, L.B., Wei, J.H., et al., 2018. Geochemical Characteristics of An'nage Hornblende Gabbro from East Kunlun Orogenic Belt and Its Constraints on Evolution of Paleo-Tethys Ocean. Earth Science, 43(2): 354-370(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201802002.htm
      巴金, 陈能松, 王勤燕, 等, 2012. 柴南缘堇青石花岗岩的Nd-Sr-Pb同位素组成及其对岩石成因、源区构造属性和构造演化的启示. 地球科学, 37(增刊1): 80-92. doi: 10.3799/dqkx.2012.S1.008
      陈有炘, 裴先治, 李瑞保, 等, 2011. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄. 现代地质, 25(3): 510-521. doi: 10.3969/j.issn.1000-8527.2011.03.013
      郭安林, 张国伟, 孙延贵, 等, 2007. 青海省共和盆地周缘晚古生代镁铁质火山岩Sr-Nd-Pb同位素地球化学及其地质意义. 岩石学报, 23(4): 747-754. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200704007.htm
      胡朝斌, 李猛, 查显锋, 等, 2018. 东昆仑祁漫塔格晚古生代末期幔源岩浆活动成因及地质意义: 以鹰爪沟岩体为例. 地球科学, 43(12): 4334-4349. doi: 10.3799/dqkx.2018.120
      马昌前, 熊富浩, 尹烁, 等, 2015. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555-3568. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512004.htm
      莫宣学, 2011. 岩浆作用与青藏高原演化. 高校地质学报, 17(3): 351-367. doi: 10.3969/j.issn.1006-7493.2011.03.001
      莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
      秦拯纬, 马昌前, 付建明, 等, 2018. 东昆仑香加花岗质岩体中镁铁质包体成因: 岩相学及地球化学证据. 地球科学, 43(7): 2420-2437. doi: 10.3799/dqkx.2018.549
      王孝磊, 2017. 花岗岩研究的若干新进展与主要科学问题. 岩石学报, 33(5): 1445-1458. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705005.htm
      吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      熊富浩, 马昌前, 张金阳, 等, 2011a. 东昆仑造山带白日其利辉长岩体LA-ICP-MS锆石U-Pb年龄及地质意义. 地质通报, 30(8): 1196-1202. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108003.htm
      熊富浩, 马昌前, 张金阳, 等, 2011b. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学. 岩石学报, 27(11): 3350-3364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111016.htm
      殷鸿福, 张克信, 1997. 东昆仑造山带的一些特点. 地球科学, 22(4): 339-342. doi: 10.3321/j.issn:1000-2383.1997.04.001
      赵旭, 付乐兵, 魏俊浩, 等, 2018. 东昆仑按纳格角闪辉长岩体地球化学特征及其对古特提斯洋演化的制约. 地球科学, 43(2): 354-370. doi: 10.3799/dqkx.2018.020
    • dqkxzx-46-6-2057-Table1-6.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (1814) PDF downloads(114) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return