• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 7
    Jul.  2021
    Turn off MathJax
    Article Contents
    Cui Huawei, Wan Yongge, Wang Xiaoshan, Huang Jichao, Jin Zhitong, 2021. Characteristic of Tectonic Stress Field in Source Region of 2018 MW7.6 Palu Earthquake and Sulawesi Area. Earth Science, 46(7): 2657-2674. doi: 10.3799/dqkx.2020.243
    Citation: Cui Huawei, Wan Yongge, Wang Xiaoshan, Huang Jichao, Jin Zhitong, 2021. Characteristic of Tectonic Stress Field in Source Region of 2018 MW7.6 Palu Earthquake and Sulawesi Area. Earth Science, 46(7): 2657-2674. doi: 10.3799/dqkx.2020.243

    Characteristic of Tectonic Stress Field in Source Region of 2018 MW7.6 Palu Earthquake and Sulawesi Area

    doi: 10.3799/dqkx.2020.243
    • Received Date: 2020-08-17
    • Publish Date: 2021-07-15
    • In order to analyse the characteristic of seismogenic structure and tectonic stress field about Palu earthquake. Based on the focal mechanism solution from Global CMT catalog between January 1976 and April 2018, the tectonic stress field is inverted about Palu Indonesia earthquake on September 28th, 2018 and Sulawesi area. The conclusions are obtained as follows: Tectonic stress field are consistency and inhomogeneity in both sides of the boundary 0°. The compressive axis is plunging to north with lower plunge and extensional axis is plunging to south with larger plunge in North area. And South area is compressed in the direction of NNW-EW and extended in the direction of N-S with lower plunge. The tectonic stress field in northern area is a subduction zone, and the stress regime is difference in North Sula Block and Manado Block, because of pushing from Batui Thrust and blocking from Celebes Sea. In the south area, the crustal material is escaped in the direction of NNE-SSW, under compression in the direction of E-W, from Banda Sea and Makasa Basin. Lower R value in central Sulawesi is probably caused by mantle flow upwelling from upper mantle. The tectonic stress field and R value are complicated and heterogeneous in eastern area, which is effected by Sanghie double subduction, Minahassa Trench and active volcano. The tectonic stress field is strike slip regime with a little part of normal in western area, which is beneficial to trigger this earthquake and supershear.

       

    • loading
    • Advokaat, E. L., Hall, R., White, L. T., et al., 2017. Miocene to Recent Extension in NW Sulawesi, Indonesia. Journal of Asian Earth Sciences, 147(2): 378-401. DOI: 10.1016/j.jseaes.2017.07.023
      Andrews, D. J., 1976. Rupture Velocity of Plane Strain Shear Cracks. Journal of Geophysical Research, 81(32): 5679-5687. DOI: 10.1029/jb081i032p05679
      Bao, H., Ampuero, J. P., Meng, L. S., et al., 2019. Early and Persistent Supershear Rupture of the 2018 Magnitude 7.5 Palu Earthquake. Nature Geoscience, 12(3): 200-205. DOI: 10.1038/s41561-018-0297-z
      Beaudouin, T., 1998. Tectonique Active et Sismotectonique du Systeme de Failles Decrochantes de Sulawesi Central (Indonesie) (Dissertation). University Paris-Sud, Paris, 343.
      Beaudouin, T., Bellier, O., Sebrier, M., 2003. Present-Day Stress and Deformation Field within the Sulawesi Island Area (Indonesia) : Geodynamic Implications. Bulletin de la Société Géologique de France, 174(3): 305-317. DOI: 10.2113/174.3.305
      Bellier, O., Sebrier, M., Beaudouin, T., et al., 2001. High Slip Rate for a Low Seismicity along the Palu-Koro Active Fault in Central Sulawesi (Indonesia). Terra Nova, 13(6): 463-470. DOI: 10.1046/j.1365-3121.2001.00382.x
      Bellier, O., Sébrier, M., Seward, D., et al., 2006. Fission Track and Fault Kinematics Analyses for New Insight into the Late Cenozoic Tectonic Regime Changes in West-Central Sulawesi (Indonesia). Tectonophysics, 413(3/4): 201-220. DOI: 10.1016/j.tecto.2005.10.036
      Bergman, S. C., Coffield, D. Q., Talbot, J. P., et al., 1996. Tertiary Tectonic and Magmatic Evolution of Western Sulawesi and the Makassar Strait, Indonesia: Evidence for a Miocene Continent-Continent Collision. Geological Society, London, Special Publications, 106(1): 391-429. DOI: 10.1144/gsl.sp.1996.106.01.25
      Bird, P., 2003. An Updated Digital Model of Plate Boundaries. Geochemistry, Geophysics, Geosystems, 4(3): 1-52. DOI: 10.1029/2001gc000252
      Burridge, R., 1973. Admissible Speeds for Plane-Strain Self-Similar Shear Cracks with Friction but Lacking Cohesion. Geophysical Journal International, 35(4): 439-455. DOI: 10.1111/j.1365-246x.1973.tb00608.x
      Burke, K., Sengör, C., 1986. Tectonic Escape in the Evolution of the Continental Crust. Reflection Seismology: The Continental Crust, 14: 41-53. http://adsabs.harvard.edu/abs/1986GMS....14...41B
      Cui, H. W., Wan, Y. G., Huang, J. C., et al., 2017. The Tectonic Stress Field in the Source of the New Britain Ms 7.4 Earthquake of March 2015 and Adjacent Areas. Chinese Journal of Geophysics, 60(3): 985-998(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201703014.htm
      Cui, H. W., Wan, Y. G., Huang, J. C., et al., 2019. Inversion for the Tectonic Stress Field and the Characteristic of the Stress Shape Factor of the Detachment Slab in the Pamir-Hindu Kush Area. Chinese Journal of Geophysics, 62(5): 1633-1649(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201905006.htm
      Daly, M. C., Cooper, M. A., Wilson, I., et al., 1991. Cenozoic Plate Tectonics and Basin Evolution in Indonesia. Marine and Petroleum Geology, 8(1): 2-21. DOI: 10.1016/0264-8172(91)90041-x
      DeMets, C., Gordon, R. G., Argus, D. F., et al., 1990. Current Plate Motions. Geophysical Journal International, 101(2): 425-478. DOI: 10.1111/j.1365-246x.1990.tb06579.x
      DeMets, C., Gordon, R. G., Argus, D. F., et al., 1994. Effect of Recent Revisions to the Geomagnetic Reversal Time Scale on Estimates of Current Plate Motions. Geophysical Research Letters, 21(20): 2191-2194. DOI: 10.1029/94gl02118
      Dziewonski, A. M., Chou, T. A., Woodhouse, J. H., 1981. Determination of Earthquake Source Parameters from Waveform Data for Studies of Global and Regional Seismicity. Journal of Geophysical Research: Solid Earth, 86(B4): 2825-2852. DOI: 10.1029/jb086ib04p02825
      Ekström, G., Nettles, M., Dziewoński, A. M., 2012. The Global CMT Project 2004-2010: Centroid-Moment Tensors for 13, 017 Earthquakes. Physics of the Earth and Planetary Interiors, 200-201: 1-9. DOI: 10.1016/j.pepi.2012.04.002
      Fang, J., Xu, C. J., Wen, Y. M., et al., 2019. The 2018 Mw 7.5 Palu Earthquake: A Supershear Rupture Event Constrained by InSAR and Broadband Regional Seismograms. Remote Sensing, 11(11): 1330. DOI: 10.3390/rs11111330
      Gao, X. W., Wan, Y. G., Huang, J. C., et al., 2015. Tectonic Stress Field Analysis and Static Coulomb Stress Changes of the Ms5.8 Inner Mongolias' Alxa Left Banner Earthquake. North China Earthquake Sciences, 33(2): 48-54(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDKD201502010.htm
      Gephart, J. W., Forsyth, D. W., 1984. An Improved Method for Determining the Regional Stress Tensor Using Earthquake Focal Mechanism Data: Application to the San Fernando Earthquake Sequence. Journal of Geophysical Research, 89(B11): 9305. DOI: 10.1029/jb089ib11p09305
      Global Centroid Moment Tensor (GCMT)Catalog. Available Online: https://www.globalcmt.org/CMTsearch.html
      Guiraud, M., Laborde, O., Philip, H., 1989. Characterization of Various Types of Deformation and Their Corresponding Deviatoric Stress Tensors Using Microfault Analysis. Tectonophysics, 170(3/4): 289-316. DOI: 10.1016/0040-1951(89)90277-1
      Hafkenscheid, E., Buiter, S. J. H., Wortel, M. J. R., et al., 2001. Modelling the Seismic Velocity Structure beneath Indonesia: A Comparison with Tomography. Tectonophysics, 333(1/2): 35-46. DOI: 10.1016/s0040-1951(00)00265-1
      Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. DOI: 10.1016/s1367-9120(01)00069-4
      Hall, R., Spakman, W., 2015. Mantle Structure and Tectonic History of SE Asia. Tectonophysics, 658(6625): 14-45. DOI: 10.1016/j.tecto.2015.07.003
      Hamilton, W. B., 1979. Tectonics of the Indonesian Region. United States Government Office, Washington.
      Hardebeck, J. L., Michael, A. J., 2006. Damped Regional-Scale Stress Inversions: Methodology and Examples for Southern California and the Coalinga Aftershock Sequence. Journal of Geophysical Research: Solid Earth, 111(B11): 1-11. DOI: 10.1029/2005jb004144
      Hardebeck, J. L., 2015. Stress Orientations in Subduction Zones and the Strength of Subduction Megathrust Faults. Science, 349(6253): 1213-1216. DOI: 10.1126/science.aac5625
      Huang, J. C., Wan, Y. G., Sheng, S. Z., et al., 2016. Heterogeneity of Present Days Stress Field in the Tonga Kermadec Subduction Zone and its Geodynamic Significance. Chinese Journal of Geophysics, 59(2): 578-592(in Chinese with English abstract). http://www.researchgate.net/publication/294521177_Heterogeneity_of_present-day_stress_field_in_the_Tonga-Kermadec_subduction_zone_and_its_geodynamic_significance_in_Chinese_with_English_abstract
      Hui, G. G., Li, S. Z., Wang, P. C., et al., 2018. Linkage between Reactivation of the Sinistral Strike-Slip Faults and 28 September 2018 Mw7.5 Palu Earthquake, Indonesia. Science Bulletin, 63(24): 1635-1640. DOI: 10.1016/j.scib.2018.11.021
      Hutchison, C. S., 1989. Geological Evolution of South-East Asia. Clarendon Press, Oxford.
      Jaya, A., Nishikawa, O., 2013. Paleostress Reconstruction from Calcite Twin and Fault-Slip Data Using the Multiple Inverse Method in the East Walanae Fault Zone: Implications for the Neogene Contraction in South Sulawesi, Indonesia. Journal of Structural Geology, 55(3-5): 34-49. DOI: 10.1016/j.jsg.2013.07.006
      Kadarusman, A., van Leeuwen, T., Sopaheluwakan, J., 2011. Eclogite, Peridotite, Granulite and Associated High-Grade Rocks from the Palu Region, Central Sulawesi, Indonesia: An Example of Mantle and Crust Interaction in a Young Orogenic Belt. Proc. Joint 36th HAGI and 40th IAGI Ann. Conv., Makassar, 10.
      Katili, J. A., 1970. Large Transcurrent Faults in Southeast Asia with Special Reference to Indonesia. Geologische Rundschau, 59(2): 581-600. DOI: 10.1007/bf01823809
      Kopp, C., Flueh, E. R., Neben, S., 1999. Rupture and Accretion of the Celebes Sea Crustrelated to the North-Sulawesi Subduction: Combinedinterpretation of Reflection and Refraction Seismicmeasurements. Journal of Geodynamics, 27(3): 309-325. DOI: 10.1016/s0264-3707(98)00004-0
      Li, F. C., Sun, Z., Zhang. J.Y., 2018. Numerical Studieson Continental Lithospheric Breakup in Response to The Extension Induced by Subduction Direction Inversion. Earth Science, 43(10): 3762-3777(in Chinese with English abstract).
      Li, H., Tang, Y., Ding, W. W., et al., 2018. Gravity Inversion on Crust Structures of the Shikoku Basin, Philippine Sea, and Its Implication to the Evolution Process. Earth Science, 43(3): 862-872(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201803018.htm
      Li, Q., Tan, K., Zhao, B., et al., 2019. The 2018 MW 7.5 Palu, Indonesia Earthquake: A Supershear Rupturing Event. Chinese Journal of Geophysics, 62(8): 3017-3023(in Chinese with English abstract). http://www.researchgate.net/publication/335005023_LiQi-2019-The_2018_Mw75_Palu_Indonesia_earthquake-a_supershear_rupturing_event
      Li, T. J., Chen, Q. F., 2019. Stress Regime Inversion in the Northwest Pacific Subduction Zone, the Segment from Northern Honshu, Japan to Northeast China. Chinese Journal of Geophysics, 62(2): 520-533(in Chinese with English abstract). http://www.researchgate.net/publication/339497561_Stress_regime_inversion_in_the_Northwest_Pacific_subduction_zone_the_segment_from_northern_Honshu_Japan_to_Northeast_China
      Li, X., Wan, Y. G., Cui, H. W., et al., 2016. Tectonic Stress Field Analysis on the Source Region of the 2015 Mw 8.3 Chile Earthquake. Acta Seismologica Sinica., 38(6): 847-853(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-seismologica-sinica_thesis/0201251976166.html
      Martínez-Garzón, P., Kwiatek, G., Ickrath, M., et al., 2014. MSATSI: A MATLAB Package for Stress Inversion Combining Solid Classic Methodology, a New Simplified User-Handling, and a Visualization Tool. Seismological Research Letters, 85(4): 896-904. DOI: 10.1785/0220130189
      Milsom, J., Susilo, A., 2001. Short-Wavelength, High-Amplitude Gravity Anomalies around the Banda Sea, and the Collapse of the Sulawesi Orogen. Tectonophysics, 333(1/2): 61-74. DOI: 10.1016/s0040-1951(00)00267-5
      Panshori, A., Martha, A. A., Maryanto, S., 2019. Imaging the Velocity Structure of Rayleigh Wave in Sulawesi Island Using Ambient Noise Tomography. International Journal of Advances in Scientific Research and Engineering, 5(1): 85-95. DOI: 10.31695/ijasre.2019.33072
      Rangin, C., Pubellier, M., Azema, J., et al., 1990. The Quest for Tethys in the Western Pacific; 8 Paleogeodynamic Maps for Cenozoic Time. Bulletin de la Société Géologique de France, VI(6): 907-913. DOI: 10.2113/gssgfbull.vi.6.907
      Replumaz, A., Kárason, H., van der Hilst, R. D., et al., 2004. 4-D Evolution of SE Asia's Mantle from Geological Reconstructions and Seismic Tomography. Earth and Planetary Science Letters, 221(1/2/3/4): 103-115. DOI: 10.1016/s0012-821x(04)00070-6
      Robinson, D. P., Das, S., Searle, M. P., 2010. Earthquake Fault Superhighways. Tectonophysics, 493(3/4): 236-243. DOI: 10.1016/j.tecto.2010.01.010
      Satyana, A.H., 2006. Docking and Post-Docking Tectonic Escapes of Eastern Sulawesi: Collisional Convergence and Their Implications to Petroleum Habitat. Proceedings of Jakarta 2006 Geoscience Conference and Exhibition, New York.
      Satyana, A. H., Armandita, C, Tarigan, R. L., 2008. Collision and Post-Collision Tectonics in Indonesia: Roles for Basin Formation and Petroleum Systems. Proceedings, Indonesian Petroleum Association, 32th Annual Convention & Exhibition.
      Siebert, L., Simkin, T., Kimberly, P., 2010. Volcanoes of the World. University of California Press, Berkeley, California.
      Silver, E. A., Joyodiwiryo, Y., McCaffrey, R., 1978. Gravity Results and Emplacement Geometry of the Sulawesi Ultramafic Belt, Indonesia. Geology, 6(9): 527. DOI:10.1130/0091-7613(1978)6<527:graego>2.0.co;2
      Silver, E. A., McCaffrey, R., Smith, R. B., 1983. Collision, Rotation, and the Initiation of Subduction in the Evolution of Sulawesi, Indonesia. Journal of Geophysical Research: Solid Earth, 88(B11): 9407-9418. DOI: 10.1029/jb088ib11p09407
      Simandjuntak, T. O., Barber, A. J., 1996. Contrasting Tectonic Styles in the Neogene Orogenic Belts of Indonesia. Geological Society, London, Special Publications, 106(1): 185-201. DOI: 10.1144/gsl.sp.1996.106.01.12
      Socquet, A., Simons, W., Vigny, C., et al., 2006. Microblock Rotations and Fault Coupling in SE Asia Triple Junction (Sulawesi, Indonesia) from GPS and Earthquake Slip Vector Data. Journal of Geophysical Research, 111(B8): 1-15. DOI: 10.1029/2005jb003963
      Socquet, A., Hollingsworth, J., Pathier, E., et al., 2019. Evidence of Supershear during the 2018 Magnitude 7.5 Palu Earthquake from Space Geodesy. Nature Geoscience, 12(3): 192-199. DOI: 10.1038/s41561-018-0296-0
      Song, X. G., Zhang, Y. F., Shan, X. J., et al., 2019. Geodetic Observations of the 2018 Mw 7.5 Sulawesi Earthquake and its Implications for the Kinematics of the Palu Fault. Geophysical Research Letters, 46(8): 4212-4220. DOI: 10.1029/2019gl082045
      Stevens, C., McCaffrey, R., Bock, Y., et al., 1999. Rapid Rotations about a Vertical Axis in a Collisional Setting Revealed by the Palu Fault, Sulawesi, Indonesia. Geophysical Research Letters, 26(17): 2677-2680. DOI: 10.1029/1999gl008344
      Surmont, J., Laj, C., Kissel, C., et al., 1994. New Paleomagnetic Constraints on the Cenozoic Tectonic Evolution of the North Arm of Sulawesi, Indonesia. Earth and Planetary Science Letters, 121(3/4): 629-638. DOI: 10.1016/0012-821x(94)90096-5
      Vigny, C., Perfettini, H., Walpersdorf, A., et al., 2002. Migration of Seismicity and Earthquake Interactions Monitored by GPS in SE Asia Triple Junction: Sulawesi, Indonesia. Journal of Geophysical Research: Solid Earth, 107(B10): ETG 7-1-ETG 7-11. DOI: 10.1029/2001jb000377
      Walpersdorf, A., Vigny, C., Subarya, C., et al., 1998a. Monitoring of the Palu-Koro Fault (Sulawesi) by GPS. Geophysical Research Letters, 25(13): 2313-2316. DOI: 10.1029/98gl01799
      Walpersdorf, A., Rangin, C., Vigny, C., 1998b. GPS Compared to Long-Term Geologic Motion of the North Arm of Sulawesi. Earth and Planetary Science Letters, 159(1/2): 47-55. DOI: 10.1016/s0012-821x(98)00056-9
      Wan, Y. G., Sheng, S. Z., Xu, Y. R., et al., 2011. Effect of Stress Ratio and Friction Coefficient on Composite P Wave Radiation Patterns. Chinese Journal of Geophysics, 54(4): 994-1001(in Chinese with English abstract). http://www.researchgate.net/publication/269991641_butongyinglizhuangtaihemocaxishuduizonghemabofushehuayangyingxiangdemoniyanjiuEffect_of_stress_ratio_and_friction_coefficient_on_composite_P_wave_radiation_patterns
      Wan, Y. G., 2016. Introduction to Seismology. Science Press, Beijing(in Chinese with English abstract).
      Wan, Y. G., 2019. Determination of Center of Several Focal Mechanisms of the Same Earthquake. Chinese Journal of Geophysics, 62(12): 4718-4728(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201912018.htm
      Wan, Y. G., Sheng, S. Z., Huang, J. C., et al., 2016. The Grid Search Algorithm of Tectonic Stress Tensor Based on Focal Mechanism Data and its Application in the Boundary Zone of China, Vietnam and Laos. Journal of Earth Science, 27(5): 777-785. DOI: 10.1007/s12583-015-0649-1
      Wang, S. J., Zhai, S.K., Yu, Z. K., et al., 2018. Reflections on Model of Modern Seafloor Hydrothermal System. Earth Science, 43(3): 835-850(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201803016.htm
      Wang, Y. Z., Feng, W. P., Chen, K., et al., 2019. Source Characteristics of the 28 September 2018 Mw 7.4 Palu, Indonesia, Earthquake Derived from the Advanced Land Observation Satellite 2 Data. Remote Sensing, 11(17): 1999. DOI: 10.3390/rs11171999
      Watkinson, I. M., Hall, R., 2017. Fault Systems of the Eastern Indonesian Triple Junction: Evaluation of Quaternary Activity and Implications for Seismic Hazards. Geological Society, London, Special Publications, 441(1): 71-120. DOI: 10.1144/sp441.8
      Wessel, P., Smith, W. H. F., 1995. New Version of the Generic Mapping Tools. Eos, Transactions American Geophysical Union, 76(33): 329-329. DOI: 10.1029/95eo00198
      Widiyantoro, S., Hilst, R., 1997. Mantle Structure beneath Indonesia Inferred from High-Resolution Tomographic Imaging. Geophysical Journal International, 130(1): 167-182. DOI: 10.1111/j.1365-246x.1997.tb00996.x
      Wu, W. N., Kao, H., Hsu, S. K., et al., 2010. Spatial Variation of the Crustal Stress Field along the Ryukyu-Taiwan-Luzon Convergent Boundary. Journal of Geophysical Research, 115(B11): 1-19. DOI: 10.1029/2009jb007080
      Wu, W. N., Lo, C. L., Lin, J. Y., 2017. Spatial Variations of the Crustal Stress Field in the Philippine Region from Inversion of Earthquake Focal Mechanisms and Their Tectonic Implications. Journal of Asian Earth Sciences, 142(9): 109-118. DOI: 10.1016/j.jseaes.2017.01.036
      Yolsal-Çevikbilen, S., Taymaz, T., 2019. Source Characteristics of the 28 September 2018 Mw 7.5 Palu-Sulawesi, Indonesia (SE Asia) Earthquake Based on Inversion of Teleseismic Bodywaves. Pure and Applied Geophysics, 176(10): 4111-4126. DOI: 10.1007/s00024-019-02294-1
      Zenonos, A., De Siena, L., Widiyantoro, S., et al., 2019. P and S Wave Travel Time Tomography of the SE Asia-Australia Collision Zone. Physics of the Earth and Planetary Interiors, 293: 106267. DOI: 10.1016/j.pepi.2019.05.010
      Zhang, Y., Chen, Y. T., Feng, W. P., 2019. Complex Multiple-Segment Ruptures of the 28 September 2018, Sulawesi, Indonesia, Earthquake. Science Bulletin, 64(10): 650-652. DOI: 10.1016/j.scib.2019.04.018
      Zoback, M. L., 1992. First- and Second-Order Patterns of Stress in the Lithosphere: The World Stress Map Project. Journal of Geophysical Research, 97(B8): 11703. DOI: 10.1029/92jb00132
      崔华伟, 万永革, 黄骥超, 等, 2017. 2015年3月新不列颠MS 7.4地震震源及邻区构造应力场特征. 地球物理学报, 60(3): 985-998. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201703014.htm
      崔华伟, 万永革, 黄骥超, 等, 2019. 帕米尔-兴都库什地区构造应力场反演及拆离板片应力形因子特征研究. 地球物理学报, 62(5): 1633-1649. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201905006.htm
      高熹微, 万永革, 黄骥超, 等, 2015. 内蒙古阿拉善左旗MS 5.8地震的构造应力场和静态库伦应力变化分析. 华北地震科学, 33(2): 48-54. doi: 10.3969/j.issn.1003-1375.2015.02.009
      黄骥超, 万永革, 盛书中, 等, 2016. 汤加-克马德克俯冲带现今非均匀应力场特征及其动力学意义. 地球物理学报, 59(2): 578-592. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201602017.htm
      李付成, 孙珍, 张江阳, 2018. 大洋板块运动方向反转控制活动陆缘岩石圈张裂过程数值模拟. 地球科学, 43(10): 3762-3777. doi: 10.3799/dqkx.2018.581
      李赫, 唐勇, 丁巍伟, 等, 2018. 菲律宾海四国海盆地壳结构重力反演及其形成演化过程分析. 地球科学, 43(3): 862-872. doi: 10.3799/dqkx.2017.505
      李琦, 谭凯, 赵斌, 等, 2019. 2018年印尼帕卢MW 7.5地震——一次超剪切破裂事件. 地球物理学报, 62(8): 3017-3023. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201908021.htm
      李天觉, 陈棋福, 2019. 西北太平洋俯冲带日本本州至中国东北段应力场反演. 地球物理学报, 62(2): 520-533. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201902007.htm
      李祥, 万永革, 崔华伟, 等, 2016. 2015年智利MW 8.3地震震源区构造应力场分析. 地震学报, 38(6): 847-853. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201606004.htm
      万永革, 2016. 地震学导论. 北京: 地震出版社.
      万永革, 2019. 同一地震多个震源机制中心解的确定. 地球物理学报, 62(12): 4718-4728. doi: 10.6038/cjg2019M0553
      万永革, 盛书中, 许雅儒, 等, 2011. 不同应力状态和摩擦系数对综合P波辐射花样影响的模拟研究. 地球物理学报, 54(4): 994-1001. doi: 10.3969/j.issn.0001-5733.2011.04.014
      王淑杰, 翟世奎, 于增慧, 等, 2018. 关于现代海底热液活动系统模式的思考. 地球科学, 43(3): 835-850. doi: 10.3799/dqkx.2018.907
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(1)

      Article views (1018) PDF downloads(58) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return