• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 12
    Dec.  2020
    Turn off MathJax
    Article Contents
    Huang Faming, Ye Zhou, Yao Chi, Li Yuanyao, Yin Kunlong, Huang Jinsong, Jiang Qinghui, 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 45(12): 4535-4549. doi: 10.3799/dqkx.2020.247
    Citation: Huang Faming, Ye Zhou, Yao Chi, Li Yuanyao, Yin Kunlong, Huang Jinsong, Jiang Qinghui, 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 45(12): 4535-4549. doi: 10.3799/dqkx.2020.247

    Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models

    doi: 10.3799/dqkx.2020.247
    • Received Date: 2020-05-28
    • Publish Date: 2020-12-15
    • The attribute interval numbers (AIN) in the frequency ratio analysis of continuous environmental factors and the landslide susceptibility model are two important uncertainties affecting the results of landslide susceptibility prediction (LSP). To study the effects of the two uncertain factors on the change rules of LSP, taking Shangyou County of Jiangxi Province, China, as study area, the AIN values of the continuous environmental factors are respectively set to be 4, 8, 12, 16 and 20. Meanwhile, five different data-based models (analytic hierarchy process (AHP), logistic regression (LR), BP neural network (BPNN), support vector machines (SVM) and random forests (RF)) are selected as LSP models. Hence, there are a total of 25 types of different calculation conditions for LSP. Finally, the accuracy and uncertainties of LSP are analyzed. The results show that: (1) For a certain model, the LSP accuracy gradually increases with the AIN value increasing from 4 to 8, then slowly increases to a stable level with AIN increasing from 8 to 20; (2) For a certain AIN, the LSP accuracy of the RF model is higher than SVM, followed by the BPNN, LR and AHP models; (3) Under all the 25 calculation conditions, the prediction accuracy of AIN=20 and RF model is the highest while that of AIN=4 and AHP model is the lowest, and the modeling efficiency and accuracy of AIN=8 and RF model are very high; (4) The landslide susceptibility indexes calculated by the higher AIN and more advanced machine learning models are more consistent with the actual distribution features of landslide probability and have relatively lower uncertainties. It can be concluded that an efficient and relatively accurate LSP model can be built under the condition of AIN value of 8 and RF model.

       

    • loading
    • Aghdam, I.N., Pradhan, B., Panahi, M., 2017.Landslide Susceptibility Assessment Using a Novel Hybrid Model of Statistical Bivariate Methods (FR and WOE) and Adaptive Neuro-Fuzzy Inference System (ANFIS) at Southern Zagros Mountains in Iran.Environmental Earth Sciences, 76(6):1-22. https://doi.org/10.1007/s12665-017-6558-0
      Bueechi, E., Klimeš, J., Frey, H., et al., 2019.Regional-Scale Landslide Susceptibility Modelling in the Cordillera Blanca, Peru:A Comparison of Different Approaches.Landslides, 16(2):395-407. https://doi.org/10.1007/s10346-018-1090-1
      Chakraborty, A., Goswami, D., 2017.Prediction of Slope Stability Using Multiple Linear Regression (MLR) and Artificial Neural Network (ANN).Arabian Journal of Geosciences, 10(17):385. https://doi.org/10.1007/s12517-017-3167-x
      Chang, Z.L., Du, Z., Zhang, F., et al., 2020.Landslide Susceptibility Prediction Based on Remote Sensing Images and GIS:Comparisons of Supervised and Unsupervised Machine Learning Models.Remote Sensing, 12(3):502. https://doi.org/10.3390/rs12030502
      Chen, W., Peng, J.B., Hong, H.Y., et al., 2018.Landslide Susceptibility Modelling Using GIS-Based Machine Learning Techniques for Chongren County, Jiangxi Province, China.Science of the Total Environment, 626:1121-1135. https://doi.org/10.1016/j.scitotenv.2018.01.124
      Chen, W., Xie, X.S., Wang, J.L., et al., 2017.A Comparative Study of Logistic Model Tree, Random Forest, and Classification and Regression Tree Models for Spatial Prediction of Landslide Susceptibility.Catena, 151:147-160. https://doi.org/10.1016/j.catena.2016.11.032
      Dou, J., Yunus, A.P., Tien Bui, D., et al., 2019.Assessment of Advanced Random Forest and Decision Tree Algorithms for Modeling Rainfall-Induced Landslide Susceptibility in the Izu-Oshima Volcanic Island, Japan.Science of the Total Environment, 662:332-346. https://doi.org/10.1016/j.scitotenv.2019.01.221
      Fanos, A.M., Pradhan, B., Mansor, S., et al., 2018.A Hybrid Model Using Machine Learning Methods and GIS for Potential Rockfall Source Identification from Airborne Laser Scanning Data.Landslides, 15(9):1833-1850. https://doi.org/10.1007/s10346-018-0990-4
      Feng, H.J., Zhou, A.G., Yu, J.J., et al., 2016.A Comparative Study on Plum-Rain-Triggered Landslide Susceptibility Assessment Models in West Zhejiang Province.Earth Science, 41(3):403-415(in Chinese with English abstract).
      Guo, Z.Z., Yin, K.L., Fu, S., et al., 2019.Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model.Earth Science, 44(12):4299-4312(in Chinese with English abstract). http://www.researchgate.net/publication/324390254_Evaluation_of_Landslide_Susceptibility_Based_on_GIS_and_WOE-BP_Model
      Guo, Z.Z., Yin, K.L., Huang, F.M., et al., 2019.Evaluation of Landslide Susceptibility Based on Landslide Classification and Weighted Frequency Ratio Model.Chinese Journal of Rock Mechanics and Engineering, 38(2):287-300(in Chinese with English abstract).
      Hong, H.Y., Pourghasemi, H.R., Pourtaghi, Z.S., 2016.Landslide Susceptibility Assessment in Lianhua County (China):A Comparison between a Random Forest Data Mining Technique and Bivariate and Multivariate Statistical Models.Geomorphology, 259:105-118. https://doi.org/10.1016/j.geomorph.2016.02.012
      Huang, F.M., Wang, Y., Dong, Z.L., et al., 2019.Regional Landslide Susceptibility Mapping Based on Grey Relational Degree Model.Earth Science, 44(2):664-676 (in Chinese with English abstract).
      Huang, F.M., Yin, K.L., Jiang, S.H., et al., 2018.Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine.Chinese Journal of Rock Mechanics and Engineering, 37(1):156-167(in Chinese with English abstract).
      Huang, F.M., Zhang, J., Zhou, C.B., et al., 2020.A Deep Learning Algorithm Using a Fully Connected Sparse Autoencoder Neural Network for Landslide Susceptibility Prediction.Landslides, 17(1):217-229. https://doi.org/10.1007/s10346-019-01274-9
      Li, L.P., Lan, H.X., Guo, C.B., et al., 2017.A Modified Frequency Ratio Method for Landslide Susceptibility Assessment.Landslides, 14(2):727-741. https://doi.org/10.1007/s10346-016-0771-x
      Lin, S., Wang, W., Deng, X.H., et al., 2019.Geophysical Observation of Typical Landslides in Three Gorges Reservoir Area and Its Significance:A Case Study of Sifangbei Landslide in Wanzhou District.Earth Science, 44(9):3135-3146(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909026.htm
      Liu, Y., Zhao, B.B., Yin, K.L., et al., 2019.Sensitivity Analysis of Maliulin Landslide Stability Based on Orthogonal Design.Earth Science, 44(2):677-684(in Chinese with English abstract).
      Luo, Y., He, S.M., He, J.C., 2014.Effect of Rainfall Patterns on Stability of Shallow Landslide.Earth Science, 39(9):1357-1363(in Chinese with English abstract).
      Park, H.J., Jang, J.Y., Lee, J.H., 2019.Assessment of Rainfall-Induced Landslide Susceptibility at the Regional Scale Using a Physically Based Model and Fuzzy-Based Monte Carlo Simulation.Landslides, 16(4):695-713. https://doi.org/10.1007/s10346-018-01125-z
      Park, S., Choi, C., Kim, B., et al., 2013.Landslide Susceptibility Mapping Using Frequency Ratio, Analytic Hierarchy Process, Logistic Regression, and Artificial Neural Network Methods at the Inje Area, Korea.Environmental Earth Sciences, 68(5):1443-1464. https://doi.org/10.1007/s12665-012-1842-5
      Pereira, D.G., Afonso, A., Medeiros, F.M., 2015.Overview of Friedman's Test and Post-Hoc Analysis.Communications in Statistics-Simulation and Computation, 44(10):2636-2653. https://doi.org/10.1080/03610918.2014.931971.
      Reichenbach, P., Rossi, M., Malamud, B.D., et al., 2018.A Review of Statistically-Based Landslide Susceptibility Models.Earth-Science Reviews, 180:60-91. https://doi.org/10.1016/j.earscirev.2018.03.001
      Tien Bui, D., Tuan, T.A., Klempe, H., et al., 2016.Spatial Prediction Models for Shallow Landslide Hazards:A Comparative Assessment of the Efficacy of Support Vector Machines, Artificial Neural Networks, Kernel Logistic Regression, and Logistic Model Tree.Landslides, 13(2):361-378. https://doi.org/10.1007/s10346-015-0557-6
      Wu, Y.P., Zhang, Q.X., Tang, H.M., et al., 2014.Landslide Hazard Warning Based on Effective Rainfall Intensity.Earth Science, 39(7):889-895(in Chinese with English abstract).
      Xu, C., Dai, F.C., Xu, X.W., 2011.Earthquake Triggered Landslide Susceptibility Evaluation Based on GIS Platform and Weight-of-Evidence Modeling.Earth Science, 36(6):1155-1164(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201106022.htm
      Youssef, A.M., Pourghasemi, H.R., Pourtaghi, Z.S., et al., 2016.Landslide Susceptibility Mapping Using Random Forest, Boosted Regression Tree, Classification and Regression Tree, and General Linear Models and Comparison of Their Performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia.Landslides, 13(5):839-856. https://doi.org/10.1007/s10346-015-0614-1
      Zhang, J., Yin, K.L., Wang, J.J., et al., 2016.Evaluation of Landslide Susceptibility for Wanzhou District of Three Gorges Reservoir.Chinese Journal of Rock Mechanics and Engineering, 35(2):284-296(in Chinese with English abstract).
      Zhang, S.H., Wu, G., 2019.Debris Flow Susceptibility and Its Reliability Based on Random Forest and GIS.Earth Science, 44(9):3115-3134(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909025.htm
      Zhang, T.L., Zhou, A.G., Sun, Q., et al., 2017.Characteristics of the Groundwater Seepage and Failure Mechanisms of Landslide Induced by Typhoon Rainstorm.Earth Science, 42(12):2354-2362(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201712019.htm
      Zhao, J.B., Liu, Y.X., Liu, N., et al., 2019.Spatial Prediction Method of Regional Landslide Based on Distributed BP Neural Network Algorithm under Massive Monitoring Data.Rock and Soil Mechanics, 40(7):2866-2872(in Chinese with English abstract).
      冯杭建, 周爱国, 俞剑君, 等, 2016.浙西梅雨滑坡易发性评价模型对比.地球科学, 41(3):403-415. doi: 10.3799/dqkx.2016.032
      郭子正, 殷坤龙, 付圣, 等, 2019a.基于GIS与WOE-BP模型的滑坡易发性评价.地球科学, 44(12):4299-4312. doi: 10.3799/dqkx.2018.555
      郭子正, 殷坤龙, 黄发明, 等, 2019b.基于滑坡分类和加权频率比模型的滑坡易发性评价.岩石力学与工程学报, 38(2):287-300. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902007.htm
      黄发明, 汪洋, 董志良, 等, 2019.基于灰色关联度模型的区域滑坡敏感性评价.地球科学, 44(2):664-676. doi: 10.3799/dqkx.2018.175
      黄发明, 殷坤龙, 蒋水华, 等, 2018.基于聚类分析和支持向量机的滑坡易发性评价.岩石力学与工程学报, 37(1):156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
      林松, 王薇, 邓小虎, 等, 2019.三峡库区典型滑坡地球物理实测及其意义:以万州区四方碑滑坡为例.地球科学, 44(9):3135-3146. doi: 10.3799/dqkx.2019.074
      刘毅, 赵斌滨, 殷坤龙, 等, 2019.基于正交设计的麻柳林滑坡稳定性敏感分析.地球科学, 44(2):677-684. doi: 10.3799/dqkx.2018.195
      罗渝, 何思明, 何尽川, 2014.降雨类型对浅层滑坡稳定性的影响.地球科学, 39(9):1357-1363. doi: 10.3799/dqkx.2014.118
      吴益平, 张秋霞, 唐辉明, 等, 2014.基于有效降雨强度的滑坡灾害危险性预警.地球科学, 39(7):889-895. doi: 10.3799/dqkx.2014.083
      许冲, 戴福初, 徐锡伟, 2011.基于GIS平台与证据权的地震滑坡易发性评价.地球科学, 36(6):1155-1164. http://www.earth-science.net/article/id/2192
      张俊, 殷坤龙, 王佳佳, 等, 2016.三峡库区万州区滑坡灾害易发性评价研究.岩石力学与工程学报, 35(2):284-296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm
      张书豪, 吴光, 2019.随机森林与GIS的泥石流易发性及可靠性.地球科学, 44(9):3115-3134. doi: 10.3799/dqkx.2019.081
      张泰丽, 周爱国, 孙强, 等, 2017.台风暴雨条件下滑坡地下水渗流特征及成因机制.地球科学, 42(12):2354-2362. doi: 10.3799/dqkx.2017.570
      赵久彬, 刘元雪, 刘娜, 等, 2019.海量监测数据下分布式BP神经网络区域滑坡空间预测方法.岩土力学, 40(7):2866-2872. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907042.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(6)

      Article views (2162) PDF downloads(121) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return