• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 7
    Jul.  2021
    Turn off MathJax
    Article Contents
    Na Jin, Jiang Xue, Jiang Zhenjiao, 2021. Numerical Modelling of Stable Isotope Transport Processes in a Hydrogeothermal System of Kangding-Laoyuling Area. Earth Science, 46(7): 2646-2656. doi: 10.3799/dqkx.2020.249
    Citation: Na Jin, Jiang Xue, Jiang Zhenjiao, 2021. Numerical Modelling of Stable Isotope Transport Processes in a Hydrogeothermal System of Kangding-Laoyuling Area. Earth Science, 46(7): 2646-2656. doi: 10.3799/dqkx.2020.249

    Numerical Modelling of Stable Isotope Transport Processes in a Hydrogeothermal System of Kangding-Laoyuling Area

    doi: 10.3799/dqkx.2020.249
    • Received Date: 2020-08-21
    • Publish Date: 2021-07-15
    • In Laoyulin geothermal system of Kangding, we uses TOUGH-Isotope program to conduct the numerical simulation of water-heat-isotope coupling. In view of the obvious seasonality of stable isotopes in precipitation and active seismic activity in the research area, the impact that the isotope characteristics of recharge water and thermal reservoir permeability variation on the transport of hydrogen and oxygen isotopes in the geothermal system also are explored in this paper. The results indicate that the calculate values of hydrogen and oxygen isotopes of the hot water are generally with the measured values in ZK3 borehole, and the convection-dispersion effect of the high-temperature geothermal system has a significant effect on the migration process of hydrogen and oxygen isotopes. The geothermal water circulation conditions in the study area are strong, which causes the phenomenon of oxygen isotope enrichment to be slight. In the geothermal water circulation, the two factors-isotope characteristics of recharge water and thermal reservoir permeability have significant effects on the distribution of hydrogen and oxygen isotopes. Therefore, the numerical modelling of stable isotope transport processes in the geothermal system fluid can help to improve the quantitative understanding of the dynamic evolution of the geothermal system, which will provide support for geothermal development.

       

    • loading
    • Bian, Y.Y., Zhao, D., 2018. Genesis of Geothermal Waters in the Kangding Geothermal Field, Sichuan Province. Acta Geoscientica Sinica, 39 (04): 109-115(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geoscientica-sinica_thesis/0201253090856.html
      Braud, I., Bariac, T., Gaudet, J. P., et al., 2005. SiSPAT-Isotope, a Coupled Heat, Water and Stable Isotope (HDO and H218O) Transport Model for Bare Soil. Part I. Model Description and First Verifications. Journal of Hydrology, 309(1/2/3/4): 277-300. https://doi.org/10.1016/j.jhydrol.2004.12.013
      Brikowski, T. H., 2001. Deep Fluid Circulation and Isotopic Alteration in the Geysers Geothermal System: Profile Models. Geothermics, 30(2/3): 333-347. https://doi.org/10.1016/s0375-6505(00)00055-9
      Chen, Z., Du, J. G., Zhou, X., et al., 2014. Hydrochemistry of the Hot Springs in Western Sichuan Province Related to the Wenchuan MS8.0 Earthquake. The Scientific World Journal, 2014(5220): 1-13. https://doi.org/10.1155/2014/901432
      Cole, D. R., Ohmoto, H., Lasaga, A. C., 1983. Isotopic Exchange in Mineral-Fluid Systems. I. Theoretical Evaluation of Oxygen Isotopic Exchange Accompanying Surface Reactions and Diffusion. Geochimica et Cosmochimica Acta, 47(10): 1681-1693. https://doi.org/10.1016/0016-7037(83)90018-2
      Cole, D. R., Mottl, M. J., Ohmoto, H., 1987. Isotopic Exchange in Mineral-Fluid Systems. II. Oxygen and Hydrogen Isotopic Investigation of the Experimental Basalt-Seawater System. Geochimica et Cosmochimica Acta, 51(6): 1523-1538. https://doi.org/10.1016/0016-7037(87)90334-6
      Cole, D. R., Chakraborty, S., 2001. Rates and Mechanisms of Isotopic Exchange. Reviews in Mineralogy and Geochemistry, 43(1): 83-223. https://doi.org/10.2138/gsrmg.43.1.83
      Fekete, S., Weis, P., Scott, S., et al., 2018. Multiple Stable Isotope Fronts during Non-Isothermal Fluid Flow. Geochimica et Cosmochimica Acta, 223: 537-557. https://doi.org/10.1016/j.gca.2017.12.009
      Gregory, R. T., Criss, R. E., Taylor, H. P. Jr, 1989. Oxygen Isotope Exchange Kinetics of Mineral Pairs in Closed and Open Systems: Applications to Problems of Hydrothermal Alteration of Igneous Rocks and Precambrian Iron Formations. Chemical Geology, 75(1/2): 1-42. https://doi.org/10.1016/0009-2541(89)90019-3
      Guo, Q., Pang, Z. H., Wang, Y. C., et al., 2017. Fluid Geochemistry and Geothermometry Applications of the Kangding High-Temperature Geothermal System in Eastern Himalayas. Applied Geochemistry, 81(4): 63-75. https://doi.org/10.1016/j.apgeochem.2017.03.007
      Horita, J., Wesolowski, D. J., 1994. Liquid-Vapor Fractionation of Oxygen and Hydrogen Isotopes of Water from the Freezing to the Critical Temperature. Geochimica et Cosmochimica Acta, 58(16): 3425-3437. https://doi.org/10.1016/0016-7037(94)90096-5
      Hou, Z.Y., 2019. Characterizing the Geothermal System in the Gonghe-Guide Basin by Coupled Fluid-Heat-Chemical (Isotope) Transport Modeling. Jilin University, Changchun(in Chinese).
      Jiang, Z. J., Xu, T. F., Mallants, D., et al., 2019. Numerical Modelling of Stable Isotope (2H and 18O) Transport in a Hydro-Geothermal System: Model Development and Implementation to the Guide Basin, China. Journal of Hydrology, 569(1-4): 93-105. https://doi.org/10.1016/j.jhydrol.2018.11.065
      Li, B., Shi, Z. M., Wang, G. C., et al., 2019. Earthquake-Related Hydrochemical Changes in Thermal Springs in the Xianshuihe Fault Zone, Western China. Journal of Hydrology, 579(3): 124175. https://doi.org/10.1016/j.jhydrol.2019.124175
      Li, X., Wang, J.J., Huang, X., et al., 2018. Chemical and Isotopic Characteristics of Hot Water in the Kangding-Daofu Section of Xianshuihe Fault Zone, Sichuan, China. Journal of Chengdu University of Technology(Science & Technology Edition), 45(6): 733-745(in Chinese with English abstract). http://www.researchgate.net/publication/331332157_Chemical_and_isotopic_characteristics_of_hot_water_in_the_Kangding-Daofu_section_of_Xianshuihe_fault_zone_Sichuan_China
      Li, Y.Y., Li, X., 2019. Exposed Characteristics of Underground Hot Water In Erdaoqiao To Yulingong Area, Kangding. Journal of Geological Hazards and Environment Preservation, 30(1): 106-112(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZHB201901020.htm
      Liu, M.L., He, T., Wu, Q.F., 2019. Hydrogeochemistry of Geothermal Waters from the Xiong'an New Area and Its Indicating Significance. Earth Science, 45(6): 2222-2231 (in Chinese with English abstract).
      Luo, J., Pang, Z. H., Kong, Y. K., et al., 2017. Geothermal Potential Evaluation and Development Prioritization Based on Geochemistry of Geothermal Waters from Kangding Area, Western Sichuan, China. Environmental Earth Sciences, 76(9): 1-24. https://doi.org/10.1007/s12665-017-6659-9
      Ma, Z.Y., Yu, J., Li, Q., 2008. Environmental Isotope Distribution and Hydrologic Geologic Sense of Guanzhong Basin Geothermal Water. Journal of Earth Sciences and Environment, 30(4): 396-401(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX200804014.htm
      Merlivat, L., 1978. Molecular Diffusivities of H216O, HD16O, and H218O in Gases. The Journal of Chemical Physics, 69(6): 2864. https://doi.org/10.1063/1.436884
      Norton, D., Taylor, J.H., 1979. Quantitative Simulation of the Hydrothermal Systems of Crystallizing Magmas on the Basis of Transport Theory and Oxygen Isotope Data: An Analysis of the Skaergaard Intrusion. Journal of Petrology, 20 (3): 421-486. doi: 10.1093/petrology/20.3.421
      Pang, Z. H., Kong, Y. L., Li, J., et al., 2017. An Isotopic Geoindicator in the Hydrological Cycle. Procedia Earth and Planetary Science, 17(4): 534-537. https://doi.org/10.1016/j.proeps.2016.12.135
      Qi, J. H., Xu, M., An, C. J., et al., 2017. Characterizations of Geothermal Springs along the Moxi Deep Fault in the Western Sichuan Plateau, China. Physics of the Earth and Planetary Interiors, 263(2): 12-22. https://doi.org/10.1016/j.pepi.2017.01.001
      Qian, H., 2005. Hydrogeochemistry. Geology Press, Beijing(in Chinese).
      Shurbajia, A. R. M., Phillips, F. M., Campbella, A. R., et al., 1995. Application of a Numerical Model for Simulating Water Flow, Isotope Transport, and Heat Transfer in the Unsaturated Zone. Journal of Hydrology, 171(1/2): 143-163. https://doi.org/10.1016/0022-1694(95)02756-f
      Song, C.L., Sun, X.Y., Wang, G. X, et al., 2015. A Study on Precipitation Stable Isotopes Characteristics and Vapor Sources of The Subalpine Gongga Mountain, China. Resources and Environment in the Yangtze Basin, 24(11): 1860-1869(in Chinese with English abstract). http://www.researchgate.net/publication/292476132_A_STUDY_ON_PRECIPITATION_STABLE_ISOTOPES_CHARACTERISTICS_AND_VAPOR_SOURCES_OF_THE_SUBALPINE_GONGGA_MOUNTAIN_CHINA
      Song, X.Q., Peng, Q., Duan, Q.B., et al., 2019. Hydrochemical Characteristics and Origin of Geothermal Water in Northeastern Guizhou. Earth Science, 44(9): 2875-2886 (in Chinese with English abstract).
      Yin, G., Wang, X.D., Gao, Z.Y., et al., 2008. Study of the Hydrology of Glacial Runoff in Hailuogou Valley, Gongga Mountain by Means of Isotopic Tracing. Journal of Glaciology and Geocryology, (3): 365-372(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-BCDT200803001.htm
      Zhang, Y.H., 2018. Research on Genesis and Development of the Geothermal System in the Kangding-Moxi Segment of the Xianshuihe Fault(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      Zhang, Z.G., Li, J., Tian, Z.H., 2009. Investigation and Evaluation of Geothermal Resources of Shattered Fractures Zones in Mountainous Areas of Xiaoreshui, Kangding. Journal of Hebei University of Technology, 48(3): 93-96(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HBGB201903015.htm
      Zheng, Y. F., 1993. "Calculation of Oxygen Isotope Fractionation in Anhydrous Silicate Minerals. " Geochimica et Cosmochimica Acta, 57(13): 3199. https://doi.org/10.1016/0016-7037(93)90306-h
      卞跃跃, 赵丹, 2018. 四川康定地热田地下热水成因研究. 地球学报, 39 (4): 109-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201804012.htm
      侯兆云, 2019. 基于流体渗流-化学(同位素)耦合模拟的共和-贵德地热储层特征分析(博士学位论文). 长春: 吉林大学.
      李晓, 王金金, 黄珣, 等, 2018. 鲜水河断裂带康定至道孚段热水化学与同位素特征. 成都理工大学学报: 自然科学版, 45(6): 733-745. doi: 10.3969/j.issn.1671-9727.2018.06.09
      李玥樾, 李晓, 2019. 康定二道桥-榆林宫地区地下热水出露特征. 地质灾害与环境保护, 30(1): 106-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201901020.htm
      刘明亮, 何曈, 吴启帆, 等, 2019. 雄安新区地热水化学特征及其指示意义. 地球科学, 45(6): 2222-2231. doi: 10.3799/dqkx.2019.270
      马致远, 余娟, 李清, 等, 2008. 关中盆地地下热水环境同位素分布及其水文地质意义. 地球科学与环境学报, 30(4): 396-401. doi: 10.3969/j.issn.1672-6561.2008.04.011
      钱会, 2005. 水文地球化学. 北京: 地质出版社.
      宋春林, 孙向阳, 王根绪, 等, 2015. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究. 长江流域资源与环境, 24(11): 1860-1869. doi: 10.11870/cjlyzyyhj201511008
      宋小庆, 彭钦, 段启杉, 等, 2019. 黔东北地区地热水化学特征及起源. 地球科, 44(9): 2875-2886. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909006.htm
      尹观, 王小丹, 高志友, 等, 2008. 贡嘎山海螺沟冰川径流水文规律的同位素示踪研究. 冰川冻土, (3): 365-372. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200803001.htm
      张云辉, 2018. 鲜水河断裂康定-磨西段地热系统成因及开发利用研究(博士学位论文). 成都: 成都理工大学.
      张志刚, 李郡, 田自浩, 2009. 康定小热水地区山区断裂破碎带地热资源勘查与评价. 河北工业大学学报, 48(3): 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGB201903015.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(1)

      Article views (1229) PDF downloads(69) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return