Citation: | Zeng Hanbin, Su Chunli, Xie Xianjun, Pan Hongjie, Ji Qiannan, Tao Yanzhen, 2021. Mechanism of Salinization of Shallow Groundwater in Western Hetao Irrigation Area. Earth Science, 46(6): 2267-2277. doi: 10.3799/dqkx.2020.259 |
An, L.S., Zhao, Q.S., Ye, S.Y., et al., 2012. Hydrochemical Characteristics and Formation Mechanism of Shallow Groundwater in Yellow River Delta. Environmental Science, 33(2): 370-378(in Chinese with English abstract). http://www.oalib.com/paper/1588350
|
Chapagain, S.K., Pandey, V.P., Shrestha, S., et al., 2010. Assessment of Deep Groundwater Quality in Kathmandu Valley Using Multivariate Statistical Techniques. Water, Air & Soil Pollution, 210(1-4): 277-288. https://doi.org/10.1007/s11270-009-0249-8
|
Dou, X., Shi, H.B., Miao, Q.F., et al., 2019. Temporal and Spatial Variability Analysis of Soil Water and Salt and the Influence of Groundwater Depth on Salt in Saline Irrigation Area. Journal of Soil and Water Conservation, 33(3): 246-253(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQS201903037.htm
|
Du, J., Yang, P.L., Li, Y.K., et al., 2010. Analysis of Spatial and Temporal Variations of Groundwater Level and Its Salinity in Hetao Irrigation District. Transactions of the Chinese Society of Agricultural Engineering, 26(7): 26-31, 391(in Chinese with English abstract). http://www.cabdirect.org/abstracts/20103335130.html
|
Ellsworth, P.Z., Williams, D.G., 2007. Hydrogen Isotope Fractionation during Water Uptake by Woody Xerophytes. Plant and Soil, 291(1-2): 93-107. https://doi.org/10.1007/s11104-006-9177-1
|
Fan, B.L., Zhang, D., Tao, Z.H., et al., 2017. Compositions of Hydrogen and Oxygen Isotope Values of Yellow River Water and the Response to Climate. China Environmental Science, 37(5): 1906-1914(in Chinese with English abstract). http://www.researchgate.net/publication/319312906_Compositions_of_hydrogen_and_oxygen_isotope_values_of_Yellow_River_water_and_the_response_to_climate_change
|
Gaillardet, J., Dupré, B., Louvat, P., et al., 1999. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical Geology, 159(1-4): 3-30. https://doi.org/10.1016/s0009-2541(99)00031-5
|
Huang, Q.Z., Xu, X., Lü, L.J., et al., 2018. Soil Salinity Distribution Based on Remote Sensing and Its Effect on Crop Growth in Hetao Irrigation District. Transactions of the Chinese Society of Agricultural Engineering, 34(1): 102-109(in Chinese with English abstract). http://www.ingentaconnect.com/content/tcsae/tcsae/2018/00000034/00000001/art00014
|
Li, C.S., Wu, X.C., Sun, B., et al., 2018. Hydrochemical Characteristics and Formation Mechanism of Geothermal Water in Northern Ji'nan. Earth Science, 43(Suppl. 1): 313-325(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1027.htm
|
Li, J.X., Su, C.L., Xie, X.J., et al., 2010. Application of Multivariate Statistical Analysis to Research the Environment of Groundwater: A Case Study at Datong Basin, Northern China. Geological Science and Technology Information, 29(6): 94-100(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201006016.htm
|
Li, M., Ning, L.B., Lu, T.M., 2015. Determination and the Control of Critical Groundwater Table in Soil Salinization Area. Journal of Irrigation and Drainage, 34(5): 46-50(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GGPS201505009.htm
|
Li, Y.L., Wang, Y.X., Zhou, L.R., et al., 2002. Hydrogeochemical Modeling on Saturation of Minerals in Groundwater: A Case Study at Niangziguan, Northern China. Geological Science and Technology Information, 21(1): 32-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200201009.htm
|
Liu, J., Guo, H.L., Liu, F.L., et al., 2013. The Variations of Stable Isotopes (δD and δ18O) in the Precipitation in Baotou Area. Journal of Arid Land Resources and Environment, 27(5): 157-162(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GHZH201305026.htm
|
Liu, Q.M., Cheng, Q.M., Wang, X., et al., 2016. Soil Salinity Inversion in Hetao Irrigation District Using Microwave Radar. Transactions of the Chinese Society of Agricultural Engineering, 32(16): 109-114(in Chinese with English abstract). http://www.ingentaconnect.com/content/tcsae/tcsae/2016/00000032/00000016/art00016
|
Lu, J., Zhang, X.J., Ye, P.S., et al., 2020. Remote Sensing Monitoring of Salinization in Hetao Irrigation District Based on SI-MSAVI Feature Space. Remote Sensing for Land and Resources, 32(1): 169-175(in Chinese with English abstract).
|
Min, M.Z., Peng, X.J., Zhou, X.L., et al., 2007. Hydrochemistry and Isotope Compositions of Groundwater from the Shihongtan Sandstone-Hosted Uranium Deposit, Xinjiang, NW China. Journal of Geochemical Exploration, 93(2): 91-108. https://doi.org/10.1016/j.gexplo.2006.12.001
|
Nosrati, K., Eeckhaut, M.D., 2012. Assessment of Groundwater Quality Using Multivariate Statistical Techniques in Hashtgerd Plain, Iran. Environmental Earth Sciences, 65(1): 331-344. https://doiorg/10.1007/s12665-011-1092-y doi: 10.1007/s12665-011-1092-y
|
Su, C.L., Wang, Y.X., Xie, X.J., et al., 2015. An Isotope Hydrochemical Approach to Understand Fluoride Release into Groundwaters of the Datong Basin, Northern China. Environmental Science Processes & Impacts, 17(4): 791-801. https://doi.org/10.1039/c4em00584h
|
Wang, S.X., Dong, X.G., Wu, B., et al., 2012. Numerical Simulation and Control Mode of Soil Water and Salt Movement in Arid Salinization. Transactions of the Chinese Society of Agricultural Engineering, 28(13): 142-148(in Chinese with English abstract). http://www.ingentaconnect.com/content/tcsae/tcsae/2012/00000028/00000013/art00023
|
Wang, X.Q., Gao, Q.Z., Lu, Q., et al., 2006. Salt-Water Balance and Dry Drainage Desalting in Hetao Irrigating Area, Inner Mongolia. Scientia Geographica Sinica, 26(4): 4455-4460(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dlkx200604012
|
Wang, Y.X., Su, C.L., Xie, X.J., et al., 2010. The Genesis of High Arsenic Groundwater: A Case Study in Datong Basin. Geology in China, 37(3): 771-780(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201003034.htm
|
Xue, X.B., Li, J.X., Qian, K., et al., 2018. Spatial Distribution and Mobilization of Iodine in Groundwater System of North China Plain: Taking Hydrogeological Section from Shijiazhuang, Hengshui to Cangzhou as an Example. Earth Science, 43(3): 910-921(in Chinese with English abstract).
|
Xie, X.J., Wang, Y.X., Su, C.L., et al., 2012. Influence of Irrigation Practices on Arsenic Mobilization: Evidence from Isotope Composition and Cl/Br Ratios in Groundwater from Datong Basin, Northern China. Journal of Hydrology, 424-425: 37-47. https://doi.org/10.1016/j.jhydrol.2011.12.017
|
Zou, C.Y., Bai, G.S., 2015. Formation Cause and Control Methods about Soil Salinization in Hetao Irrigation Area. Yellow River, 37(9): 143-148(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RMHH201509041.htm
|
Zhu, G.F., Li, Z.Z., Su, Y.H., et al., 2007. Hydrogeochemical and Isotope Evidence of Groundwater Evolution and Recharge in Minqin Basin, Northwest China. Journal of Hydrology, 333(2-4): 239-251. https://doi.org/10.1016/j.jhydrol.2006.08.013
|
安乐生, 赵全升, 叶思源, 等, 2012. 黄河三角洲浅层地下水化学特征及形成作用. 环境科学, 33(2): 370-378. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201202007.htm
|
窦旭, 史海滨, 苗庆丰, 等, 2019. 盐渍化灌区土壤水盐时空变异特征分析及地下水埋深对盐分的影响. 水土保持学报, 33(3): 246-253. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201903037.htm
|
杜军, 杨培岭, 李云开, 等, 2010. 河套灌区年内地下水埋深与矿化度的时空变化. 农业工程学报, 26(7): 26-31, 391. doi: 10.3969/j.issn.1002-6819.2010.07.005
|
范百龄, 张东, 陶正华, 等, 2017. 黄河水氢、氧同位素组成特征及其气候变化响应. 中国环境科学, 37(5): 1906-1914. doi: 10.3969/j.issn.1000-6923.2017.05.038
|
黄权中, 徐旭, 吕玲娇, 等, 2018. 基于遥感反演河套灌区土壤盐分分布及对作物生长的影响. 农业工程学报, 34(1): 102-109. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201801014.htm
|
李常锁, 武显仓, 孙斌, 等, 2018. 济南北部地热水水化学特征及其形成机理. 地球科学, 43(增刊1): 313-325. doi: 10.3799/dqkx.2018.206
|
李俊霞, 苏春利, 谢先军, 等, 2010. 多元统计方法在地下水环境研究中的应用: 以山西大同盆地为例. 地质科技情报, 29(6): 94-100. doi: 10.3969/j.issn.1000-7849.2010.06.016
|
李明, 宁立波, 卢天梅, 2015. 土壤盐渍化地区地下水临界深度确定及其水位调控. 灌溉排水学报, 34(5): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201505009.htm
|
李义连, 王焰新, 周来茹, 等, 2002. 地下水矿物饱和度的水文地球化学模拟分析: 以娘子关泉域岩溶水为例. 地质科技情报, 21(1): 32-36. doi: 10.3969/j.issn.1000-7849.2002.01.008
|
刘君, 郭华良, 刘福亮, 等, 2013. 包头地区大气降水δD和δ18O变化特征浅析. 干旱区资源与环境, 27(5): 157-162. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201305026.htm
|
刘全明, 成秋明, 王学, 等, 2016. 河套灌区土壤盐渍化微波雷达反演. 农业工程学报, 32(16): 109-114. doi: 10.11975/j.issn.1002-6819.2016.16.016
|
卢晶, 张绪教, 叶培盛, 等, 2020. 基于SI-MSAVI特征空间的河套灌区盐碱化遥感监测研究. 国土资源遥感, 32(1): 169-175. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG202001024.htm
|
王水献, 董新光, 吴彬, 等, 2012. 干旱盐渍土区土壤水盐运动数值模拟及调控模式. 农业工程学报, 28(13): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201213024.htm
|
王学全, 高前兆, 卢琦, 等, 2006. 内蒙古河套灌区水盐平衡与干排水脱盐分析. 地理科学, 26(4): 4455-4460. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200604011.htm
|
王焰新, 苏春利, 谢先军, 等, 2010. 大同盆地地下水砷异常及其成因研究. 中国地质, 37(3): 771-780. doi: 10.3969/j.issn.1000-3657.2010.03.033
|
薛肖斌, 李俊霞, 钱坤, 等, 2018. 华北平原原生富碘地下水系统中碘的迁移富集规律: 以石家庄-衡水-沧州剖面为例. 地球科学, 43(3): 910-921. doi: 10.3799/dqkx.2017.564
|
邹超煜, 白岗栓, 2015. 河套灌区土壤盐渍化成因及防治. 人民黄河, 37(9): 143-148. doi: 10.3969/j.issn.1000-1379.2015.09.038
|