Citation: | Lin Chenggui, Cheng Zhizhong, Yao Xiaofeng, Yan Tingjie, Li Yang, Wang Wei, Guo Qiang, 2020. Feasibility of Prospecting Based on PMGRA Gas Geochemical Survey in Shallow Covered Area of Liaodong Area. Earth Science, 45(11): 4038-4053. doi: 10.3799/dqkx.2020.263 |
Cameron, E. M., Hamilton, S. M., Leybourne, M. I., et al., 2004. Finding Deeply Buried Deposits Using Geochemistry. Geochemistry:Exploration, Environment, Analysis, 4(1):7-32. https://doi.org/10.1144/1467-7873/03-019
|
Chi, Q. H., Yan, M. C., 2007. Handbook of Elemental Abundance for Applied Geochemistry. Geological Publishing House, Beijing, 1-148 (in Chinese).
|
Fridman, A. I., 1990. Application of Naturally Occurring Gases as Geochemical Pathfinders in Prospecting for Endogenetic Deposits. Journal of Geochemical Exploration, 38(2):1-11. https://doi.org/10.1016/0375-6742(90)90090-W
|
Gosar, M., Šajn, R., Teršič, T., 2016. Distribution Pattern of Mercury in the Slovenian Soil:Geochemical Mapping Based on Multiple Geochemical Datasets. Journal of Geochemical Exploration, 167:38-48. https://doi.org/10.1016/j.gexplo.2016.05.005
|
Güleç , N., Hilton, D. R., 2016. Turkish Geothermal Fields as Natural Analogues of CO2 Storage Sites:Gas Geochemistry and Implications for CO2 Trapping Mechanisms. Geothermics, 64:96-110. https://doi.org/10.1016/j.geothermics.2016.04.008
|
Hale, M., 2010. Gas Geochemistry and Deeply Buried Mineral Deposits:The Contribution of the Applied Geochemistry Research Group, Imperial College of Science and Technology, London. Geochemistry:Exploration, Environment, Analysis, 10(3):261-267. https://doi.org/10.1144/1467-7873/09-236
|
Han, Z. X., Liao, J. G., Zhang, Y. L., et al., 2017. Review of Deep-Penetrating Geochemical Exploration Methods. Advances in Earth Science, 32(8):828-838 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ201708006.htm
|
Hinkle, M. E., Ryder, J. L., Sutley, S. J., et al., 1990. Production of Sulfur Gases and Carbon Dioxide by Synthetic Weathering of Crushed Drill Cores from the Santa Cruz Porphyry Copper Deposit near Casa Grande, Pinal County, Arizona. Journal of Geochemical Exploration, 38(1/2):43-67. https://doi.org/10.1016/0375-6742(90)90092-o
|
Hou, Z. Q., Zheng, Y. C., Geng, Y. S., 2015. Metallic Refertilization of Lithosphere along Cratonic Edges and Its Control on Au, Mo and REE Ore Systems. Mineral Deposits, 34(4):641-674 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201504001.htm
|
Li, D. D., Wang, Y. W., Zhang, Z. C., et al., 2019, Characteristics of Metallotectonics and Ore-Forming Structural Plane in Baiyun Gold Deposit, Liaoning. Journal of Geomechanics, 25(Suppl.1):10-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX2019S1003.htm
|
Li, W., Liu, C. H., He, G. W., et al., 2017. The Application of Soil Mercury Survey Method to the Exploration of Concealed Mineral Resources in Yinnao, Yudu Area. Geophysical and Geochemical Exploration, 41(5):840-845 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH201705008.htm
|
Liu, J., Wang, S. L., Li, T. G., et al., 2018. Geochronology and Isotopic Geochemical Characteristics of Wulong Gold Deposit in Liaoning Province. Mineral Deposits, 37(4):712-728 (in Chinese with English abstract).
|
Lombardi, S., Voltattorni, N., 2010. Rn, He and CO2 Soil Gas Geochemistry for the Study of Active and Inactive Faults. Applied Geochemistry, 25(8):1206-1220. https://doi.org/10.1016/j.apgeochem.2010.05.006
|
Ma, Y. B., Bagas, L., Xing, S. W., et al., 2016. Genesis of the Stratiform Zhenzigou Pb-Zn Deposit in the North China Craton:Rb-Sr and C-O-S-Pb Isotope Constraints. Ore Geology Reviews, 79:88-104. https://doi.org/10.1016/j.oregeorev.2016.05.009
|
Mann, A. W., Birrell, R. D., Fedikow, M. A. F., et al., 2005. Vertical Ionic Migration:Mechanisms, Soil Anomalies, and Sampling Depth for Mineral Exploration. Geochemistry:Exploration, Environment, Analysis, 5(3):201-210. https://doi.org/10.1144/1467-7873/03-045
|
Mann, A. W., Birrell, R. D., Mann, A. T., et al., 1998. Application of the Mobile Metal Ion Technique to Routine Geochemical Exploration. Journal of Geochemical Exploration, 61(1):87-102. https://doi.org/10.1016/S0375-6742(97)00037-X
|
McCarthy, J. H., Lambe, R. N., Dietrich, J. A., 1986. A Case Study of Soil Gases as an Exploration Guide in Glaciated Terrain; Crandon Massive Sulfide Deposit, Wisconsin. Economic Geology, 81(2):408-420. https://doi.org/10.2113/gsecongeo.81.2.408
|
Oakes, B. W., Hale, M., 1987. Dispersion Patterns of Carbonyl Sulphide above Mineral Deposits. Journal of Geochemical Exploration, 28(1/2/3):235-249. https://doi.org/10.1016/0375-6742(87)90050-1
|
Polito, P. A., Clarke, J. D. A., Bone1, Y., et al., 2002. A CO2-O2-Light Hydrocarbon-Soil-Gas Anomaly above the Junction Orogenic Gold Deposit:A Potential, Alternative Exploration Technique. Geochemistry:Exploration, Environment, Analysis, 2(4):333-344. https://doi.org/10.1144/1467-787302-035
|
Reid, A. R., Rasmussen, J. D., 1990. The Use of Soil-Gas CO2 in the Exploration for Sulfide-Bearing Breccia Pipes in Northern Arizona. Journal of Geochemical Exploration, 38(1/2):87-101. https://doi.org/10.1016/0375-6742(90)90094-q
|
Wan, W., Chen, Z. Y., Cheng, Z. Z., et al., 2019. Pilot Study of CO2 Gas Measurement Method for Mineral Exploration in Hilly Areas. Geophysical and Geochemical Exploration, 43(1):70-76 (in Chinese with English abstract).
|
Wang, M. Q., Gao, Y. Y., Zhang, D. E., et al., 2006. Breakthrough in Mineral Exploration Using Geogas Survey in the Basin Area of Northern Qilian Region and Its Significance. Geophysical & Geochemical Exploration, 30(1):7-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH200601002.htm
|
Wang, M. Z., Ji, Z. J., Liang, Q. F., et al., 2011. Ore-Controlling Structure Characteristics and Ore Prospecting in Wulong Gold Deposit, Liaoning Province. Geology and Mineral Resources of South China, 27(3):191-196 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HNKC201103004.htm
|
Wang, X. Q., 1998. Deed Penetration Exploration Geochemistry. Geophysical & Geochemical Exploration, 22(3):166-169 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH199803001.htm
|
Wang, X. Q., Ye, R., 2011. Findings of Nanoscale Metal Particles:Evidence for Deep-Penetrating Geochemistry. Acta Geoscientica Sinica, 32(1):7-12 (in Chinese with English abstract). http://www.oalib.com/paper/1560340
|
Wang, X. Q., Zhang, B. M., Xin, L., et al., 2016. Geochemical Challenges of Diverse Regolith-Covered Terrains for Mineral Exploration in China. Ore Geology Reviews, 73:417-431. doi: 10.1016/j.oregeorev.2015.08.015
|
Wang, Y. W., Xie, H. J., Li, D. D., et al., 2017. Prospecting Prediction of Ore Concentration Area Exemplified by Qingchengzi Pb-Zn-Au-Ag Ore Concentration Area, Eastern Liaoning Province. Mineral Deposits, 36(1):1-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201701001.htm
|
Xiao, S. Y., Zhu, G., Zhang, S., et al., 2018. Structural Processes and Dike Emplacement Mechanism in the Wulong Gold Field, Eastern Liaoning. Chinese Science Bulletin, 63(28):3022-3036 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-KXTB2018Z2011.htm
|
Xu, L., Yang, J. H., Zeng, Q. D., et al., 2020. Pyrite Rb-Sr, Sm-Nd and Fe Isotopic Constraints on the Age and Genesis of the Qingchengzi Pb-Zn Deposits, Northeastern China. Ore Geology Reviews, 117:103324. https://doi.org/10.1016/j.oregeorev.2020.103324
|
Yang, Y. C., Li, Y. J., He, J. P., et al., 2017. Application of Geochemical Soil Survey in the Gongpoquan Gold Deposit at Mazongshan, Gansu Province. Geology and Exploration, 53(4):715-730 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201704011.htm
|
Yu, B., Zeng, Q. D., Frimmeld, H. E., et al., 2018. Genesis of the Wulong Gold Deposit, Northeastern North China Craton:Constraints from Fluid Inclusions, H-O-S-Pb Isotopes, and Pyrite Trace Element Concentrations. Ore Geology Reviews, 102:313-337. https://doi.org/10.1016/j.oregeorev.2018.09.016
|
Zeng, Q. D., Chen, R. Y., Yang, J. H., et al., 2019. The Metallogenic Characteristics and Exploring Ore Potential of the Gold Deposits in Eastern Liaoning Province. Acta Petrologica Sinica, 35(7):1939-1963 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.01
|
Zeng, X., Chen, Y. R., Lin, L. B., et al., 2016. The Feasibility of Applying Integrated Hydrocarbon and Mercury Method to Ore Prospecting in Alluvial Coverage Area. Geology in China, 43(2):607-616 (in Chinese with English abstract). http://www.researchgate.net/publication/311434079_The_feasibility_of_applying_integrated_hydrocarbon_and_mercury_method_to_ore_prospecting_in_alluvial_coverage_area
|
Zhang, B. M., Wang, X. Q., 2018. Theory and Technology of Nanogeochemistry for Mineral Exploration. Earth Science, 43(5):1503-1517 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201805012.htm
|
Zhang, J., Cheng, Z. Z., Lun, Z. Y., et al., 2016. Soil Air Carbon Dioxide, Sulphur Dioxide and Hydrogen Sulfide Measurements as a Guide to Concealed Mineralization. Geological Science and Technology Information, 35(4):12-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201604003.htm
|
Zhang, P., Kou, L. L., Zhao, Y., et al., 2020. Genesis of the Wulong Gold Deposit, Liaoning Province, NE China:Constrains from Noble Gases, Radiogenic and Stable Isotope Studies. Geoscience Frontiers, 11(2):547-563. https://doi.org/10.1016/j.gsf.2019.05.012
|
Zhang, P., Zhao, Y., Kou, L. L., et al., 2019. Zircon U-Pb Ages, Hf Isotopes and Geological Significance of Mesozoic Granites in Dandong Area, Liaodong Peninsula. Earth Science, 44(10):3297-3313 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910010.htm
|
Zhang, Z. Q., Wang, G., Carranza, E. J. M., et al., 2019. Metallogenic Model of the Wulong Gold District, China, and Associated Assessment of Exploration Criteria Based on Multi-Scale Geoscience Datasets. Ore Geology Reviews, 114:103138. https://doi.org/10.1016/j.oregeorev.2019.103138
|
Zhou, S. C., Liu, X. H., Tong, C. H., et al., 2014. Application Research of Geogas Survey in Prospecting Concealed Ore. Acta Geologica Sinica, 88(4):736-754 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201404025.htm
|
迟清华, 鄢明才, 2007.应用地球化学元素丰度数据手册.北京:地质出版社, 1-148.
|
韩志轩, 廖建国, 张聿隆, 等, 2017.穿透性地球化学勘查技术综述与展望.地球科学进展, 32(8):828-838. http://www.cqvip.com/QK/94287X/20178/673453133.html
|
侯增谦, 郑远川, 耿元生, 2015.克拉通边缘岩石圈金属再富集与金-钼-稀土元素成矿作用.矿床地质, 34(4):641-674. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201504001.htm
|
李德东, 王玉往, 张志超, 等, 2019.辽宁白云金矿床成矿构造与成矿结构面特征浅析.地质力学学报, 25(S1):10-12. http://www.cqvip.com/main/zcps.aspx?c=1&id=68907688504849578349484851
|
李伟, 刘翠辉, 贺根文, 等, 2017.壤中汞气测量在于都营脑隐伏矿产勘查中的应用.物探与化探, 41(5):840-845. http://www.cqvip.com/QK/95670X/201705/673300033.html
|
刘军, 王树岭, 李铁刚, 等, 2018.辽宁省五龙金矿床成岩成矿年代学及同位素地球化学特征.矿床地质, 37(4):712-728. http://www.kcdz.ac.cn/kcdzen/ch/reader/view_abstract.aspx?file_no=20180402&flag=1
|
万卫, 陈振亚, 程志中, 等, 2019. CO2气体测量方法在低山丘陵区隐伏矿勘查的试验研究.物探与化探, 43(1):70-76. http://d.old.wanfangdata.com.cn/Periodical_wtyht201901008.aspx
|
汪明启, 高玉岩, 张得恩, 等, 2006.地气测量在北祁连盆地区找矿突破及其意义.物探与化探, 30(1):7-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200601002
|
王明志, 纪兆家, 梁群峰, 等, 2011.辽宁五龙金矿控矿构造分析及找矿方向.华南地质与矿产, 27(3):191-196. http://d.wanfangdata.com.cn/Periodical/hndzykc201103003
|
王学求, 1998.深穿透勘查地球化学.物探与化探, 22(3):166-169. http://www.cnki.com.cn/Article/CJFDTotal-WTYH199803001.htm
|
王学求, 叶荣, 2011.纳米金属微粒发现——深穿透地球化学的微观证据.地球学报, 32(1):7-12. http://d.wanfangdata.com.cn/Periodical/dqxb201101002
|
王玉往, 解洪晶, 李德东, 等, 2017.矿集区找矿预测研究:以辽东青城子铅锌-金-银矿集区为例.矿床地质, 36(1):1-24. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201701001.htm
|
肖世椰, 朱光, 张帅, 等, 2018.辽东五龙金矿区成矿期构造过程与岩脉就位机制.科学通报, 63(28):3022-3036. http://www.cnki.com.cn/Article/CJFDTotal-KXTB2018Z2011.htm
|
杨永春, 李元家, 何建平, 等, 2017.土壤地球化学测量在马鬃山公婆泉东金矿的应用.地质与勘探, 53(4):715-730. http://www.cnki.com.cn/Article/CJFDTotal-DZKT201704011.htm
|
曾庆栋, 陈仁义, 杨进辉, 等, 2019.辽东地区金矿床类型、成矿特征及找矿潜力.岩石学报, 35(7):1939-1963. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201907001.htm
|
曾旭, 陈远荣, 林立保, 等, 2016.烃汞综合气体测量法在冲洪积覆盖区找矿的可行性探讨.中国地质, 43(2):607-616. http://www.cqvip.com/QK/90050X/20162/668599244.html
|
张必敏, 王学求, 2018.矿产勘查的纳米地球化学理论与方法.地球科学, 43(5):1503-1517. doi: 10.3799/dqkx.2018.409
|
张洁, 程志中, 伦知颍, 等, 2016.土壤中CO2、SO2和H2S气体测量:一种适用于覆盖区找矿的化探方法.地质科技情报, 35(4):12-17. http://www.cqvip.com/qk/93477a/201604/669489689.html
|
张朋, 赵岩, 寇林林, 等, 2019.辽东半岛丹东地区中生代花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义.地球科学, 44(10):3297-3313. doi: 10.3799/dqkx.2019.129
|
周四春, 刘晓辉, 童纯菡, 等, 2014.地气测量技术及在隐伏矿找矿中的应用研究.地质学报, 88(4):736-754. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201404025.htm
|