• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 8
    Aug.  2021
    Turn off MathJax
    Article Contents
    Liang Jianshe, Kong Lingwu, Qiu Chunguang, Li Hua, Jia Shen, Long Xu, 2021. Gas Accumulation Mechanism in East Africa Coastal Key Basins. Earth Science, 46(8): 2919-2933. doi: 10.3799/dqkx.2020.264
    Citation: Liang Jianshe, Kong Lingwu, Qiu Chunguang, Li Hua, Jia Shen, Long Xu, 2021. Gas Accumulation Mechanism in East Africa Coastal Key Basins. Earth Science, 46(8): 2919-2933. doi: 10.3799/dqkx.2020.264

    Gas Accumulation Mechanism in East Africa Coastal Key Basins

    doi: 10.3799/dqkx.2020.264
    • Received Date: 2020-07-27
      Available Online: 2021-09-14
    • Publish Date: 2021-08-15
    • East Africa coastal basins are prolific in natural gas resources and are the hot spots of natural gas exploration in the world. The natural gas in the key East Africa coastal basins is sapropelic thermal gas, which mainly sourced from Lower Jurassic restricted marine high-quality source rocks. Large faults controlled the vertical migration of natural gas in the key East Africa coastal basins, where mainly developed large extensional faults and large strike-slip faults. The large strike-slip faults were main migration pathway of natural gas in the south of Tanzania Basin. Their main active period was from Late Cretaceous to Paleocene, which controlled the gas migration of the Cretaceous-Paleogene gas-bearing turbidite sandstone, while extensional faults were the main migration pathway of natural gas in Ruvuma Basin. Their main active period was Paleocene, Oligocene and Neogene, which controlled the gas migration of Paleogene gas-bearing turbidite sand stone. The type and size of turbidite sand controlled the size of lithological or structure-lithological trap in deepwater, and which in turn controlled the size of natural gas field. Due to the different migration modes of natural gas, East Africa coastal basins formed large strike-slip fault controlling accumulation model and large extensional fault controlling accumulation model.

       

    • loading
    • Cai, L.X., Xiao, G.L., Dong, H.P., et al., 2020. Characteristics of Mesozoic Source Rocks and Exploration Direction of Oil and Gas in the Eastern Depression, North Yellow Sea Basin. Earth Science, 45(2): 583-601 (in Chinese with English abstract).
      Cao, Q.B., Tang, P.C., Lü, F.L., et al., 2018. Formation Conditions and Controlling Factors of Gas-Bearing Turbidite Sand Reservoirs in Deep Water Deposits in the Rovuma Basin, East Africa. Marine Origin Petroleum Geology, 23(3): 65-72 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HXYQ201803007.htm
      Catuneanu, O., Wopfner, H., Eriksson, P. G., et al., 2005. The Karoo Basins of South-Central Africa. Journal of African Earth Sciences, 43(1-3): 211-253. https://doi.org/10.1016/j.jafrearsci.2005.07.007
      Chen, Y.H., Yao, G.S., Lü, F.L., et al., 2017. Sedimentary Characteristics and Controlling Factors of Oligocene Deep-Water Channel-Lobe in Rovuma Basin of the East Africa. Acta Petrolei Sinica, 38(9): 1047-1058 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201709006.htm
      Cui, G., Jin, A.M., Wu, C.W., et al., 2020. Tectonic Evolution of East Africa Coast and Comparison of Hydrocarbon Accumulation Conditions in the North and South Petroliferous Basins. Marine Geology & Quaternary Geology, 40(1): 104-113 (in Chinese with English abstract).
      Du, J.Y., Zhang, X.T., Liu, P., et al., 2020. Classification of the Paleogene Source-to-Sink System and Its Petroleum Geological Significance in the Zhuyi Depression of the Pearl River Mouth Basin. Earth Science (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2020.133
      Emmel, B., Kumar, R., Ueda, K., et al., 2011. Thermochronological History of an Orogen-Passive Margin System: An Example from Northern Mozambique. Tectonics, 30(2): TC2002. https://doi.org/10.1029/2010tc002714
      Fonnesu, M., Palermo, D., Galbiati, M., et al., 2020. A New World-Class Deep-Water Play-Type, Deposited by the Syndepositional Interaction of Turbidity Flows and Bottom Currents: The Giant Eocene Coral Field in Northern Mozambique. Marine and Petroleum Geology, 111: 179-201. https://doi.org/10.1016/j.marpetgeo.2019.07.047
      Fuhrmann, A., Kane, I. A., Clare, M. A., et al., 2020. Hybrid Turbidite-Drift Channel Complexes: An Integrated Multiscale Model. Geology, 48(6): 562-568. https://doi.org/10.1130/g47179.1
      Guo, X., Li, H., Liang, J.S., et al., 2019. Sedimentary Characteristics and Controlling Factors of Deep-Water Gravity Flow Deposits of the Oligocene in Tanzania Basin. Journal of Palaeogeography (Chinese Edition), 21(6): 971-982 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GDLX201906008.htm
      IHS, 2020. International Energy Oil & Gas Industry Solutions. https://my.ihs.com/Energy/Products
      Liu, Z.Y., Lü, M., Lu, J.M., et al., 2017. Deepwater Depositional System in the Background of Narrow Shelf in the Ruvuma Basin, Eastern Africa. Marine Origin Petroleum Geology, 22(4): 27-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ201704004.htm
      Mahanjane, E. S., 2014. The Davie Fracture Zone and Adjacent Basins in the Offshore Mozambique Margin-A New Insights for the Hydrocarbon Potential. Marine and Petroleum Geology, 57: 561-571. https://doi.org/10.1016/j.marpetgeo.2014.06.015
      Phethean, J. J., Kalnins, L. M., van Hunen, J., et al., 2016. Madagascar's Escape from Africa: A High-Resolution Plate Reconstruction for the Western Somali Basin and Implications for Supercontinent Dispersal. Geochemistry, Geophysics, Geosystems, 17(12): 5036-5055. https://doi.org/10.1002/2016gc006624
      Reeves, C., 2014. The Position of Madagascar within Gondwana and Its Movements during Gondwana Dispersal. Journal of African Earth Sciences, 94: 45-57. https://doi.org/10.1016/j.jafrearsci.2013.07.011
      Said, A., Moder, C., Clark, S., et al., 2015. Sedimentary Budgets of the Tanzania Coastal Basin and Implications for Uplift History of the East African Rift System. Journal of African Earth Sciences, 111: 288-295. https://doi.org/10.1016/j.jafrearsci.2015.08.012
      Schoell, M., 1984. Recent Advances in Petroleum Isotope Geochemistry. Organic Geochemistry, 6: 645-663. https://doi.org/10.1016/0146-6380(84)90086-x
      Scotese, C. R., 1991. Jurassic and Cretaceous Plate Tectonic Reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 87(1-4): 493-501. https://doi.org/10.1016/0031-0182(91)90145-h
      Sun, H., Liu, S.Z., Lü, F.L., et al., 2019a. Sedimentary Characteristics and Influential Factors of Oligocene Deep Water Sand-Rich Lobe Complex in the Rovuma Basin, East Africa. Acta Geologica Sinica, 93(5): 1154-1165 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201905012.htm
      Sun, H., Liu, S.Z., Lü, F.L., et al., 2019b. Stratigraphic Framework and Temporal-Spatial Distribution of Oligocene Deepwater Sedimentary Sequence in Ruvuma Basin, East Africa. Oil & Gas Geology, 40(1): 170-181 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_oil-gas-geology_thesis/0201270872146.html
      Sun, H., Liu, S.Z., Ma, H.X., et al., 2017. Characteristics and Controlling Factors of Coarse-Grained Turbidite Sediment Waves in Submarine Channel-Lobe System of the Ruvuma Basin, East Africa. Acta Sedimentologica Sinica, 35(4): 763-771 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CJXB201704010.htm
      Sun, Y.M., Sun, T., Xu, Z.G., 2016. Source Rock Characteristics and Oil-Gas Origins in Tanzania Basin, East Africa Coast. China Offshore Oil and Gas, 28(1): 13-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201601002.htm
      Wang, L., Qu, H.J., Zhang, G.C., et al., 2017. Petroleum Geological Characteristics and Exploration Prospects in Tanzania Basin, East Africa. Marine Geology Frontiers, 33(12): 46-52 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=HYDT201712006&dbcode=CJFD&year=2017&dflag=pdfdown
      Wen, Z.X., Wang, Z.M., Song, C.P., et al., 2015. Structural Architecture Difference and Petroleum Exploration of Passive Continental Margin Basins in East Africa. Petroleum Exploration and Development, 42(5): 671-680 (in Chinese with English abstract). http://www.cqvip.com/QK/90664X/201505/666165984.html
      Xu, Z.G., Han, W.M., Sun, Y.M., 2014a. Tectonic Evolution and Petroleum Exploration Prospect of East Africa. Geology in China, 41(3): 961-969 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201403021.htm
      Xu, Z.G., Han, W.M., Sun, Y.M., 2014b. Differences in Petroleum Geological Conditions of Conjugate Continental Margin in East Africa. Natural Gas Geoscience, 25(5): 732-738 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201405012.htm
      Yu, S., 2020. Depositional Genesis Analysis of Source Rock in Pinghu Formation of Western Slope, Xihu Depression. Earth Science, 45(5): 1722-1736 (in Chinese with English abstract).
      Zhang, G.C., Qu, H.J., Zhang, F.L., et al., 2019. Major New Discoveries of Oil and Gas in Global Deepwaters and Enlightenment. Acta Petrolei Sinica, 40(1): 1-34 (in Chinese with English abstract). doi: 10.1038/s41401-018-0042-6
      Zhang, G.Y., Liu, X.B., Wen, Z.X., et al., 2015. Structural and Sedimentary Characteristics of Passive Continental Margin Basins in East Africa and Their Effect on the Formation of Giant Gas Fields. China Petroleum Exploration, 20(4): 71-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY201504009.htm
      Zhao, J., Zhang, G.Y., Li, Z., et al., 2018. Characteristics and the Forming Process of the Eocene Ultra-Deep-Water Gravity Flow Sandstone Reservoir in the Rovuma Basin, East Afirca. Earth Science Frontiers, 25(2): 83-91 (in Chinese with English abstract). http://www.researchgate.net/publication/327767005_Characteristics_and_the_forming_process_of_the_Eocene_ultra-deep-water_gravity_flow_sandstone_reservoir_in_the_Rovuma_Basin_East_Afirca
      Zhou, Z.Y., Tao, Y., Li, S.J., et al., 2013. Hydrocarbon Potential in the Key Basins in the East Coast of Africa. Petroleum Exploration and Development, 40(5): 543-551 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380413600762
      蔡来星, 肖国林, 董贺平, 等, 2020. 北黄海盆地东部坳陷中生界烃源岩特征及其指示的油气勘探方向. 地球科学, 45(2): 583-601. doi: 10.3799/dqkx.2019.004
      曹全斌, 唐鹏程, 吕福亮, 等, 2018. 东非鲁伍马盆地深水浊积砂岩气藏成藏条件及控制因素. 海相油气地质, 23(3): 65-72. doi: 10.3969/j.issn.1672-9854.2018.03.007
      陈宇航, 姚根顺, 吕福亮, 等, 2017. 东非鲁伍马盆地渐新统深水水道-朵体沉积特征及控制因素. 石油学报, 38(9): 1047-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201709006.htm
      崔哿, 金爱民, 邬长武, 等, 2020. 东非海岸构造演化及其对南、北主要富油气盆地控藏作用对比. 海洋地质与第四纪地质, 40(1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202001011.htm
      杜家元, 张向涛, 刘培, 等, 2020. 珠江口盆地珠一坳陷古近系"源-汇"系统分类及石油地质意义. 地球科学. https://doi.org/10.3799/dqkx.2020.133
      郭笑, 李华, 梁建设, 等, 2019. 坦桑尼亚盆地渐新统深水重力流沉积特征及控制因素. 古地理学报, 21(6): 971-982. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201906008.htm
      刘子玉, 吕明, 卢景美, 等, 2017. 东非鲁伍马盆地窄陆架背景下的深水沉积体系. 海相油气地质, 22(4): 27-34. doi: 10.3969/j.issn.1672-9854.2017.04.004
      孙辉, 刘少治, 吕福亮, 等, 2019a. 东非鲁武马盆地渐新统富砂深水朵体复合体特征及影响因素. 地质学报, 93(5): 1154-1165. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201905012.htm
      孙辉, 刘少治, 吕福亮, 等, 2019b. 东非鲁武马盆地渐新统深水沉积层序地层格架组成和时空分布. 石油与天然气地质, 40(1): 170-181. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901018.htm
      孙辉, 刘少治, 马宏霞, 等, 2017. 东非鲁武马盆地海底水道-朵体体系粗粒浊流沉积物波特征及主控因素. 沉积学报, 35(4): 763-771. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201704010.htm
      孙玉梅, 孙涛, 许志刚, 2016. 东非海岸坦桑尼亚盆地烃源岩特征与油气来源. 中国海上油气, 28(1): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201601002.htm
      汪立, 屈红军, 张功成, 等, 2017. 东非坦桑尼亚盆地油气地质特征与勘探前景. 海洋地质前沿, 33(12): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201712006.htm
      温志新, 王兆明, 宋成鹏, 等, 2015. 东非被动大陆边缘盆地结构构造差异与油气勘探. 石油勘探与开发, 42(5): 671-680. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505017.htm
      许志刚, 韩文明, 孙玉梅, 2014a. 东非大陆边缘构造演化过程与油气勘探潜力. 中国地质, 41(3): 961-969. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201403021.htm
      许志刚, 韩文明, 孙玉梅, 2014b. 东非共轭型大陆边缘油气成藏差异性分析. 天然气地球科学, 25(5): 732-738. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201405012.htm
      于水, 2020. 西湖凹陷西斜坡平湖组烃源岩沉积成因分析. 地球科学, 45(5): 1722-1736. doi: 10.3799/dqkx.2019.188
      张功成, 屈红军, 张凤廉, 等, 2019. 全球深水油气重大新发现及启示. 石油学报, 40(1): 1-34. doi: 10.3969/j.issn.1001-8719.2019.01.001
      张光亚, 刘小兵, 温志新, 等, 2015. 东非被动大陆边缘盆地构造-沉积特征及其对大气田富集的控制作用. 中国石油勘探, 20(4): 71-80. doi: 10.3969/j.issn.1672-7703.2015.04.008
      赵健, 张光亚, 李志, 等, 2018. 东非鲁武马盆地始新统超深水重力流砂岩储层特征及成因. 地学前缘, 25(2): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201802012.htm
      周总瑛, 陶冶, 李淑筠, 等, 2013. 非洲东海岸重点盆地油气资源潜力. 石油勘探与开发, 40(5): 543-551. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201305006.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(20)

      Article views (1750) PDF downloads(83) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return