• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 8
    Aug.  2021
    Turn off MathJax
    Article Contents
    Wang Wei, Xiong Fuhao, Ma Changqian, Chen Yue, Huang Hu, 2021. Petrogenesis of Triassic Suolagou Sanukitoid-like Diorite in East Kunlun Orogen and Its Implications for Paleo-Tethyan Orogeny. Earth Science, 46(8): 2887-2902. doi: 10.3799/dqkx.2020.270
    Citation: Wang Wei, Xiong Fuhao, Ma Changqian, Chen Yue, Huang Hu, 2021. Petrogenesis of Triassic Suolagou Sanukitoid-like Diorite in East Kunlun Orogen and Its Implications for Paleo-Tethyan Orogeny. Earth Science, 46(8): 2887-2902. doi: 10.3799/dqkx.2020.270

    Petrogenesis of Triassic Suolagou Sanukitoid-like Diorite in East Kunlun Orogen and Its Implications for Paleo-Tethyan Orogeny

    doi: 10.3799/dqkx.2020.270
    • Received Date: 2020-08-16
      Available Online: 2021-09-14
    • Publish Date: 2021-08-15
    • Sanukitoid with special genetic mechanism is one important petrological probe to study the magma dynamic processes and associated tectonic process. In this study, it presents petrology, geochronology, elemental geochemistry and Lu-Hf isotopic data on the Suolagou sanukitoid-like diorite in East Kunlun, aiming to characterize its petrogenesis and to reveal its implications on the Paleo-Tethyan orogeny. Zircon U-Pb dating shows that the Suolagou diorite was formed in the Middle Triassic (~243 Ma). Geochemically, they have low contents of SiO2(50.26%-57.40%), but high contents of total alkaline (Na2O+K2O=3.5%-6.3%), MgO (6.0%-7.1%) and high Mg# (50.1-60.9), belonging to high magnesium, calc-alkaline and metaluminous series. The Suolagou diorites show geochemical similarities to high Mg# andesitic sanukitoids with high contents of Sr (622×10-6-1 041×10-6), Cr (30×10-6-161×10-6) and Ni (19×10-6-79×10-6), and moderate contents of Y(7.6×10-6-24.3×10-6) and Yb(0.62×10-6-1.87×10-6). These rocks display remarkable enrichment in light rare earth elements and large-ion lithophile elements (such as Cs, Rb, K and Pb) but depletion in high-field strength elements (such as Ta, Nb and Zr), resembling the arc-related magmatic rocks above subduction zone. Lu-Hf isotopes show that the Suolagou diorites were derived from partial melting of enriched lithospheric mantle (εHf(t)=-2.4 to -0.4, TDM=0.89-0.99 Ga). The~243 Ma sanukitoid-like diorite in East Kunlun were formed in a continental arc setting, i.e., the parent magma derived from partial melting of enriched lithospheric mantle, subsequently followed by fractional crystallization of amphibole and biotite. This study suggests that the transition from Paleo-Tethyan oceanic slab subduction to terranes collision in East Kunlun occurred at Middle Triassic, and the Suolagou sanukitoid-like high-Mg diorites could be the magmatic response to the slab break-off at the end of subduction.

       

    • loading
    • Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173-174.
      Chen, J., Wang, B. Z., Li, B., et al., 2015. Zircon U-Pb Ages, Geochemistry, and Sr-Nd-Pb Isotopic Compositions of Middle Triassic Granodiorites from the Kaimuqi Area, East Kunlun, Northwest China: Implications for Slab Breakoff. International Geology Review, 57(2): 257-270. https://doi.org/10.1080/00206814.2014.1003105
      Chen, J. J., Wei, J. H., Fu, L. B., et al., 2017. Multiple Sources of the Early Mesozoic Gouli Batholith, Eastern Kunlun Orogenic Belt, Northern Tibetan Plateau: Linking Continental Crustal Growth with Oceanic Subduction. Lithos, 292-293: 161-178. https://doi.org/10.1016/j.lithos.2017.09.006
      Chen, N.S., Sun, M., Wang, Q.Y., et al., 2007. EMP Chemical Ages of Monazites from Central Zone of the Eastern Kunlun Orogen: Records of Multi-Tectonometamorphic Events. Chinese Science Bulletin, 52(11): 1297-1306 (in Chinese). doi: 10.1360/csb2007-52-11-1297
      Chen, S.J., Li, R.S., Ji, W.H., et al., 2010. The Permian Lithofacies Paleogeographic Characteristics and Basin-Mountain Conversion in the Kunlun Orogenic Belt. Geology in China, 37(2): 374-393 (in Chinese with English abstract). http://www.researchgate.net/publication/289454308_The_Permian_lithofacies_paleogeographic_characteristics_and_basin-mountain_conversion_in_the_Kunlun_orogenic_belt
      Chen, Y.X., Pei, X.Z., Li, R.B., et al., 2014. Rock Association, Geochemical Characteristics and Tectonic Setting of the Xiaomiao Formation, East Region of East Kunlun Orogenic Belt. Acta Geologica Sinica, 88(6): 1038-1054 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201406007.htm
      Chiaradia, M., Müntener, O., Beate, B., 2014. Quaternary Sanukitoid-Like Andesites Generated by Intracrustal Processes (Chacana Caldera Complex, Ecuador): Implications for Archean Sanukitoids. Journal of Petrology, 55(4): 769-802. https://doi.org/10.1093/petrology/egu006
      Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
      Dong, Y. P., He, D. F., Sun, S. S., et al., 2018. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261. https://doi.org/10.1016/j.earscirev.2017.12.006
      Guo, X.Z., Xie, W.H., Zhou, H.B., et al., 2019. Zircon U-Pb Chronology and Geochemistry of the Rhyolite Porphyry in the Nagengkangqieer Silver Polymetallic Deposit, East Kunlun and Their Geological Significance. Earth Science, 44(7): 2505-2518 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201907022.htm
      Heilimo, E., Halla, J., Hölttä, P., 2010. Discrimination and Origin of the Sanukitoid Series: Geochemical Constraints from the Neoarchean Western Karelian Province (Finland). Lithos, 115(1-4): 27-39. https://doi.org/10.1016/j.lithos.2009.11.001
      Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/c2ja30078h
      Huang, H., Niu, Y. L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010
      Jones, J. H., Walker, D., Pickett, D. A., et al., 1995. Experimental Investigations of the Partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa, and U between Immiscible Carbonate and Silicate Liquids. Geochimica et Cosmochimica Acta, 59(7): 1307-1320. https://doi.org/10.1016/0016-7037(95)00045-2
      Kamei, A., Owada, M., Nagao, T., et al., 2004. High-Mg Diorites Derived from Sanukitic HMA Magmas, Kyushu Island, Southwest Japan Arc: Evidence from Clinopyroxene and Whole Rock Compositions. Lithos, 75(3-4): 359-371. https://doi.org/10.1016/j.lithos.2004.03.006
      la Flèche, M. R., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3-4): 115-136. https://doi.org/10.1016/s0009-2541(98)00002-3
      Laurent, O., Martin, H., Moyen, J. F., et al., 2014. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of "Modern-Style" Plate Tectonics between 3.0 and 2.5 Ga. Lithos, 205: 208-235. https://doi.org/10.1016/j.lithos.2014.06.012
      Li, R.B., Pei, X.Z., Li, Z.C., et al., 2012. Geological Characteristics of Late Palaeozoic-Mesozoic Unconformities and Their Response to Some Significant Tectonic Events in Eastern Part of Eastern Kunlun. Earth Science Frontiers, 19(5): 244-254 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201205024
      Li, R. B., Pei, X. Z., Pei, L., et al., 2018. The Early Triassic Andean-Type Halagatu Granitoids Pluton in the East Kunlun Orogen, Northern Tibet Plateau: Response to the Northward Subduction of the Paleo-Tethys Ocean. Gondwana Research, 62: 212-226. https://doi.org/10.1016/j.gr.2018.03.005
      Liu, B., Ma, C. Q., Huang, J., et al., 2017. Petrogenesis and Tectonic Implications of Upper Triassic Appinite Dykes in the East Kunlun Orogenic Belt, Northern Tibetan Plateau. Lithos, 284-285: 766-778. https://doi.org/10.1016/j.lithos.2017.05.016
      Liu, J.L., Sun, F.Y., Li, L., et al., 2015. Geochronology, Geochemistry and Hf Isotopes of Gerizhuotuo Complex Intrusion in West of Anyemaqen Suture Zone. Earth Science, 40(6): 965-981 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx201506003
      Liu, Y. J., Genser, J., Neubauer, F., et al., 2005. 40Ar/39Ar Mineral Ages from Basement Rocks in the Eastern Kunlun Mountains, NW China, and Their Tectonic Implications. Tectonophysics, 398(3-4): 199-224. https://doi.org/10.1016/j.tecto.2005.02.007
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Martin, H., Moyen, J. F., Rapp, R., 2010. The Sanukitoid Series: Magmatism at the Archaean-Proterozoic Transition. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100(1-2): 15-33. https://doi.org/10.1017/s1755691009016120
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011AGUFM.T51D2370M
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
      Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.89
      Roger, F., Arnaud, N., Gilder, S., et al., 2003. Geochronological and Geochemical Constraints on Mesozoic Suturing in East Central Tibet. Tectonics, 22(4): 1037. https://doi.org/10.1029/2002tc001466
      Shao, F. L., Niu, Y. L., Liu, Y., et al., 2017. Petrogenesis of Triassic Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau and Their Tectonic Implications. Lithos, 282-283: 33-44. https://doi.org/10.1016/j.lithos.2017.03.002
      Stern, R. A., Hanson, G. N., Shirey, S. B., 1989. Petrogenesis of Mantle-Derived, LILE-Enriched Archean Monzodiorites and Trachyandesites (Sanukitoids) in Southwestern Superior Province. Canadian Journal of Earth Sciences, 26(9): 1688-1712. https://doi.org/10.1139/e89-145
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tatsumi, Y., 2001. Geochemical Modeling of Partial Melting of Subducting Sediments and Subsequent Melt-Mantle Interaction: Generation of High-Mg Andesites in the Setouchi Volcanic Belt, Southwest Japan. Geology, 29(4): 323-326. https://doi.org/10.1130/0091-7613(2001)0290323:gmopmo>2.0.co;2 doi: 10.1130/0091-7613(2001)0290323:gmopmo>2.0.co;2
      Tatsumi, Y., 2006. High-Mg Andesites in the Setouchi Volcanic Belt, Southwestern Japan: Analogy to Archean Magmatism and Continental Crust Formation? Annual Review of Earth and Planetary Sciences, 34(1): 467-499. https://doi.org/10.1146/annurev.earth.34.031405.125014
      Tatsumi, Y., Shukuno, H., Sato, K., et al., 2003. The Petrology and Geochemistry of High-Magnesium Andesites at the Western Tip of the Setouchi Volcanic Belt, SW Japan. Journal of Petrology, 44(9): 1561-1578. https://doi.org/10.1093/petrology/egg049
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
      Wang, G.C., Wang, Q.H., Jian, P., et al., 2004. Zircon SHRIMP Ages of Precambrian Metamorphic Basement Rocks and Their Tectonic Significance in the Eastern Kunlun Mountains, Qinghai Province, China. Earth Science Frontiers, 11(4): 481-490 (in Chinese with English abstract).
      Wang, G.C., Xiang, S.Y., Wang, A., et al., 2007. Thermochronological Constraint to the Processes of the East Kunlun and Adjacent Areas in Mesozoic-Early Cenozoic. Earth Science, 32(5): 605-614 (in Chinese with English abstract).
      Xiong, F. H., Ma, C. Q., Jiang, H. A., et al., 2016. Geochronology and Petrogenesis of Triassic High-K Calc-Alkaline Granodiorites in the East Kunlun Orogen, West China: Juvenile Lower Crustal Melting during Post-Collisional Extension. Journal of Earth Science, 27(3): 474-490. https://doi.org/10.1007/s12583-016-0674-6
      Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic I-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863. https://doi.org/10.1144/jgs2013-038
      Xu, Z. Q., Yang, J. S., Jiang, M., et al., 2001. Deep Structure and Lithospheric Shear Faults in the East Kunlun-Qiangtang Region, Northern Tibetan Plateau. Science China Earth Sciences, 44(1): 1-9. https://doi.org/10.1007/bf02911965
      Yin, H.F., Zhang, K.X., 1997. Some Characteristics of the East Kunlun Orogenic Belt. Earth Science, 22(4): 3-6 (in Chinese). http://www.researchgate.net/publication/306203698_Characteristics_of_the_eastern_Kunlun_orogenic_belt
      Yuan, C., Sun, M., Xiao, W. J., et al., 2009. Garnet-Bearing Tonalitic Porphyry from East Kunlun, Northeast Tibetan Plateau: Implications for Adakite and Magmas from the MASH Zone. International Journal of Earth Sciences, 98(6): 1489-1510. https://doi.org/10.1007/s00531-008-0335-y
      Yuan, W.M., Mo, X.X., Zhang, A.K., et al., 2017. Discovery of New Porphyry Belts in Eastern Kunlun Mountains, Qinghai-Tibet Plateau. Earth Science Frontiers, 24(6): 1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201706001.htm
      Zhan, F.Y., Gu, F.B., Li, D.S., et al., 2007. Tectonic Environment of Adakite in Eastern Kunlun Area, Qinghai, and Its Ore-Forming Significance. Acta Geologica Sinica, 81(10): 1352-1368 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200710007.htm
      Zhang, H., Wang, Z.Q., Ma, C.Q., et al., 2018. Proto-Tethys Record in Paleo-Tethys Belt of East Kunlun: Evidence from Kuhai Mafic Blocks. Earth Science, 43(4): 1164-1188 (in Chinese with English abstract). http://www.researchgate.net/publication/325534319_Proto-Tethys_Record_in_Paleo-Tethys_Belt_of_East_Kunlun_Evidence_from_Kuhai_Mafic_Blocks
      Zhang, M.Y., Feng, C.Y., Wang, H., et al., 2018. Petrogenesis and Tectonic Implications of the Late Triassic Syenogranite in Qimantag Area, East Kunlun Mountains. Acta Petrologica et Mineralogica, 37(2): 197-210 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW201802002.htm
      Zhang, Q., Qian, Q., Zhai, M.G., et al., 2005. Geochemistry, Petrogenesis and Geodynamic Implications of Sanukite. Acta Petrologica et Mineralogica, 24(2): 117-125 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200502004.htm
      Zhang, Y., Pei, X.Z., Li, R.B., et al., 2017. Zircon U-Pb Geochronology, Geochemistry of the Alasimu Gabbro in Eastern Section of East Kunlun Mountains and the Closing Time of Paleo-Ocean Basin. Geology in China, 44(3): 526-540 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201703011.htm
      Zhao, X., Fu, L.B., Wei, J.H., et al., 2018. Geochemical Characteristics of An'nage Hornblende Gabbro from East Kunlun Orogenic Belt and Its Constraints on Evolution of Paleo-Tethys Ocean. Earth Science, 43(2): 354-370 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_earth-science_thesis/0201252989570.html
      陈能松, 孙敏, 王勤燕, 等, 2007. 东昆仑造山带昆中带的独居石电子探针化学年龄: 多期构造变质事件记录. 科学通报, 52(11): 1297-1306. doi: 10.3321/j.issn:0023-074X.2007.11.014
      陈守建, 李荣社, 计文化, 等, 2010. 昆仑造山带二叠纪岩相古地理特征及盆山转换探讨. 中国地质, 37(2): 374-393. doi: 10.3969/j.issn.1000-3657.2010.02.011
      陈有炘, 裴先治, 李瑞保, 等, 2014. 东昆仑东段中元古代小庙岩组岩石组合、地球化学特征及构造环境分析. 地质学报, 88(6): 1038-1054. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406007.htm
      国显正, 谢万洪, 周洪兵, 等, 2019. 东昆仑那更康切尔银多金属矿床流纹斑岩锆石U-Pb年代学、地球化学特征及其地质意义. 地球科学, 44(7): 2505-2518. doi: 10.3799/dqkx.2018.101
      李瑞保, 裴先治, 李佐臣, 等, 2012. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应. 地学前缘, 19(5): 244-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205025.htm
      刘金龙, 孙丰月, 李良, 等, 2015. 青海阿尼玛卿蛇绿混杂岩带西段哥日卓托杂岩体年代学、地球化学及Hf同位素. 地球科学, 40(6): 965-981. doi: 10.3799/dqkx.2015.081
      莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
      王国灿, 王青海, 简平, 等, 2004. 东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义. 地学前缘, 11(4): 481-490. doi: 10.3321/j.issn:1005-2321.2004.04.014
      王国灿, 向树元, 王岸, 等, 2007. 东昆仑及相邻地区中生代-新生代早期构造过程的热年代学记录. 地球科学, 32(5): 605-614. doi: 10.3321/j.issn:1000-2383.2007.05.003
      殷鸿福, 张克信, 1997. 东昆仑造山带的一些特点. 地球科学, 22(4): 3-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX704.000.htm
      袁万明, 莫宣学, 张爱奎, 等, 2017. 青海省东昆仑斑岩带新发现. 地学前缘, 24(6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706001.htm
      詹发余, 古凤宝, 李东生, 等, 2007. 青海东昆仑埃达克岩的构造环境及成矿意义. 地质学报, 81(10): 1352-1368. doi: 10.3321/j.issn:0001-5717.2007.10.006
      张航, 王宗起, 马昌前, 等, 2018. 东昆仑古特提斯构造带中的原特提斯记录: 来自苦海镁铁质岩块的证据. 地球科学, 43(4): 1164-1188. doi: 10.3799/dqkx.2018.714
      张明玉, 丰成友, 王辉, 等, 2018. 东昆仑祁漫塔格地区晚三叠世正长花岗岩岩石成因及构造意义. 岩石矿物学杂志, 37(2): 197-210. doi: 10.3969/j.issn.1000-6524.2018.02.002
      张旗, 钱青, 翟明国, 等, 2005. Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学意义. 岩石矿物学杂志, 24(2): 117-125. doi: 10.3969/j.issn.1000-6524.2005.02.005
      张玉, 裴先治, 李瑞保, 等, 2017. 东昆仑东段阿拉思木辉长岩锆石U-Pb年代学、地球化学特征及洋盆闭合时限界定. 中国地质, 44(3): 526-540. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201703011.htm
      赵旭, 付乐兵, 魏俊浩, 等, 2018. 东昆仑按纳格角闪辉长岩体地球化学特征及其对古特提斯洋演化的制约. 地球科学, 43(2): 354-370. doi: 10.3799/dqkx.2018.020
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (1107) PDF downloads(75) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return