• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 5
    May  2021
    Turn off MathJax
    Article Contents
    Sun Ronglin, He Shiwei, Huang Kang, 2021. Study on the Influencing Factors of Specific Yield of Unconfined Aquifer Using Laboratory Column Drainage Experiment. Earth Science, 46(5): 1840-1847. doi: 10.3799/dqkx.2020.271
    Citation: Sun Ronglin, He Shiwei, Huang Kang, 2021. Study on the Influencing Factors of Specific Yield of Unconfined Aquifer Using Laboratory Column Drainage Experiment. Earth Science, 46(5): 1840-1847. doi: 10.3799/dqkx.2020.271

    Study on the Influencing Factors of Specific Yield of Unconfined Aquifer Using Laboratory Column Drainage Experiment

    doi: 10.3799/dqkx.2020.271
    • Received Date: 2020-06-21
    • Publish Date: 2021-05-15
    • Specific yield is one of the most important hydrogeological parameters of unconfined aquifer. In order to study the influencing factors of specific yield, the laboratory column drainage experiment was developed to estimate specific yield of homogeneous and stratified heterogeneous sand columns. The groundwater level was decreased according to segmentation of 2 cm or 5 cm and each section kept different drainage times to obtain the specific yield value of different depth to water table. When the depth to water table was within the capillary rise height, the relationship between specific yield and water table depth can be expressed by a nonlinear function. The specific yield value increased with the drainage time and it became constant when the drainage time of each drawdown section was more than one hour. Specific yield value of coarse sand with particle size 0.6-0.9 mm was always larger than that of fine sand with particle size 0.2-0.4 mm. When groundwater level was 20 cm under the layer interface, two different columnar structures of upper-coarse-lower-fine and vice versa exerted distinct impacts on the magnitude of specific yield. For shallow unconfined aquifer, specific yield varied with the initial depth to water table, duration of drainage, soil texture and heterogeneity near the water table.

       

    • loading
    • Brooks, R.H., Corey, A.T., 1964. Hydraulic Properties of Porous Media. Colorado State University, Fort Collins.
      Chen, X.H., Song, J.X., Wang, W.K., 2010. Spatial Variability of Specific Yield and Vertical Hydraulic Conductivity in a Highly Permeable Alluvial Aquifer. Journal of Hydrology, 388: 379-388. https://doi.org/10.1016/j.jhydrol.2010.05.017
      Cheng, D.H., Wang, Y.H., Duan, J.B., et al., 2015. A New Analytical Expression for Ultimate Specific Yield and Shallow Groundwater Drainage. Hydrological Processes, 29: 1905-1911. https://doi.org/10.1002/hyp.10306
      Cheng, D.W., Wang, W.K., Zhan, H.B., et al., 2020. Quantification of Transient Specific Yield Considering Unsaturated-Saturated Flow. Journal of Hydrology, 580: 1-11. https://doi.org/10.1016/j.jhydrol.2019.124043 http://www.sciencedirect.com/science/article/pii/S002216941930770X
      Duke, H.R., 1972. Capillary Properties of Soils-Influence upon Specific Yield. Transactions of the ASAE, 15(4): 688-691. https://doi.org/10.13031/2013.37986
      Fan, J.L., Oestergaard, K.T., Guyot, A., et al., 2014. Estimating Groundwater Recharge and Evapotranspiration from Water Table Fluctuations under Three Vegetation Covers in a Coastal Sandy Aquifer of Subtropical Australia. Journal of Hydrology, 519: 1120-1129. https://doi.org/10.1016/j.jhydrol.2014.08.039
      Freeze, R.A., Cherry, J.A., 1979. Groundwater. Prentice-Hall, Englewood Cliffs, NJ.
      Gao, Y.F., Liang, D.W., Ren, S.C., 1990. A New Method of Determining the Specific Yield of Layered Soils in Shallow Layer under Surface. Earth Sciences, 15(2): 196-202 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199002010.htm
      Guo, M., Wan, J.W., Jiang, F., et al., 2017. Estimating Unconfined Aquifer Parameters Based on Groundwater Tidal Effect. Earth Science, 42(1): 155-160 (in Chinese with English abstract).
      Lei, Z.D., Xie, S.C., Yang, S.X., et al., 1984. The Preliminary Investigation of the Specific Yield. Journal of Hydraulic Engineering, 2(5): 10-17 (in Chinese with English abstract).
      Nachabe, M.H., 2002. Analytical Expressions for Transient Specific Yield and Shallow Water Table Drainage. Water Resources Research, 38(10): 1193-1198. https://doi.org/10.1029/2001WR001071. doi: 10.1029/2001WR001071
      Neuman, S.P., 1987. On Methods of Determining Specific Yield. Groundwater, 25(6): 679-684. https://doi.org/10.1111/j.1745-6584.1987.tb02208.x
      Nwankwor, G.I., Cherry, J.A., Gilliam, R.W., 1984. A Comparative Study of Specific Yield Determinations for a Shallow Sand Aquifer. Groundwater, 22 (6): 764-772. https://doi.org/10.1111/j.1745-6584.1984.tb01445.x
      Pei, Y.S., Li, X.D., Zhao, Y., et al., 2020. Research on Vertical Recharge and Specific Yield of Unconfined Aquifer at a Typical Area of North China Plain with a Deep Groundwater Table. South-to-North Water Transfers and Water Science & Technology, 18(1): 176-193 (in Chinese and English abstract).
      Pozdniakov, S. P., Wang, P., Lekhov, V. A., 2019. An Approximate Model for Predicting the Specific Yield under Periodic Water Table Oscillations. Water Resources Research, 55: 6185-6197. https://doi.org/10.1029/2019WR025053
      Said, A., Nachabe, M., Ross, M., 2005. Methodology for Estimating Specific Yield in Shallow Water Environment Using Continuous Soil Moisture Data. Journal of Irrigation and Drainage Engineering, 131(6): 533-538. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:6(533)
      Seraphin, P., Gonçalvès, J., Vallet-Coulomb, C., et al., 2018. Multi-Approach Assessment of the Spatial Distribution of the Specific Yield: Application to the Crau Plain Aquifer, France. Hydrogeology Journal, 26(4): 1221-1238. doi: 10.1007/s10040-018-1753-y
      Shah, N., Ross, M., 2009. Variability in Specific Yield under Shallow Water Table Conditions. Journal of Hydrologic Engineering, 14(12): 1290-1298. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000121
      Wang, J., Liang, X., Jin, M.G., et al., 2020. Evaluation of Phreatic Evaporation in Manas River Basin Plain by Bromine Tracing Method. Earth Science, 45(3): 1050-1060 (in Chinese with English abstracts).
      Wang, Y.H., Chen, D.H., Duan, J.B., 2014. Experimental Study of Relationship between Specific Yield and Buried Depth of Shallow Groundwater. Yangtze River, 45(5): 60-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RIVE201405020.htm
      Worthington, S.R.H., Foley, A.E., Soley, R.W.N., 2019, Transient Characteristics of Effective Porosity and Specific Yield in Bedrock Aquifers, Journal of Hydrology, 578: 1-10. https://doi.org/10.1016/j.jhydrol.2019.124129 http://www.sciencedirect.com/science/article/pii/S0022169419308649
      Xu, X.T., Jian, W.B., Wu, N.S., et al., 2018. Unsaturated Seepage Characteristics of Slope under Rainfall Infiltration. Earth Science, 43(3): 922-932 (in Chinese with English abstracts).
      Zhang, R.Q., Liang, X., Jin, M.G., et al, 2018. Fundamentals of Hydrogeology. Geological Publishing House, Beijing (in Chinese).
      Zhang, W.Z., Cai, M.J., 1988. Experimental Study of Drainable Porosity of Loamy Soils and Its Numerical Simulation. Journal of the Wuhan Institute of Hydraulic and Electric Engineering, 2: 1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WSDD198802000.htm
      高云福, 梁定伟, 任书才, 1990. 确定浅部层状土给水度的一种新方法. 地球科学, 15(2): 196-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199002010.htm
      郭敏, 万军伟, 江峰, 等, 2017. 用地下水潮汐效应确定潜水含水层水文地质参数. 地球科学, 42(1): 155-160. doi: 10.3799/dqkx.2017.012
      雷志栋, 谢森传, 杨诗秀, 等, 1984. 土壤给水度的初步研究. 水利学报, 2(5): 10-17. doi: 10.3321/j.issn:0559-9350.1984.05.002
      裴源生, 李旭东, 赵勇, 等, 2020. 华北典型地下水大深埋区潜水层垂向补给特征及其给水度. 南水北调与水利科技, 18(1): 176-193. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD202001024.htm
      王健, 梁杏, 靳孟贵, 等, 2020. 运用溴离子示踪法评价玛纳斯河流域平原区潜水蒸发. 地球科学, 45(3): 1051-1060. doi: 10.3799/dqkx.2019.089
      王玉红, 程东会, 段吉波, 2014. 浅层地下水给水度与水位埋深关系的试验研究. 人民长江, 45(5): 60-64. doi: 10.3969/j.issn.1001-4179.2014.05.016
      许旭堂, 简文彬, 吴能森, 等, 2018. 降雨入渗影响下边坡中的非饱和渗流特性. 地球科学, 43(3): 922-932. doi: 10.3799/dqkx.2017.580
      张人权, 梁杏, 靳孟贵, 等, 2018. 水文地质学基础. 北京: 地质出版社.
      张蔚榛, 蔡美娟, 1988. 均质壤土给水度的室内试验和数值模拟. 武汉水利电力学院学报, 2: 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD198802000.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(3)

      Article views (1676) PDF downloads(49) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return