• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 6
    Jun.  2021
    Turn off MathJax
    Article Contents
    Huang Xiaokun, Wei Junhao, Li Huan, Chen Mengting, Wang Yilong, Li Guomeng, Yan Maoqiang, Zhang Xinming, 2021. Zircon U-Pb Geochronological, Elemental and Sr-Nd-Hf Isotopic Constraints on Petrogenesis of Late Triassic Quartz Diorite in Balong Region, East Kunlun Orogen. Earth Science, 46(6): 2037-2056. doi: 10.3799/dqkx.2020.286
    Citation: Huang Xiaokun, Wei Junhao, Li Huan, Chen Mengting, Wang Yilong, Li Guomeng, Yan Maoqiang, Zhang Xinming, 2021. Zircon U-Pb Geochronological, Elemental and Sr-Nd-Hf Isotopic Constraints on Petrogenesis of Late Triassic Quartz Diorite in Balong Region, East Kunlun Orogen. Earth Science, 46(6): 2037-2056. doi: 10.3799/dqkx.2020.286

    Zircon U-Pb Geochronological, Elemental and Sr-Nd-Hf Isotopic Constraints on Petrogenesis of Late Triassic Quartz Diorite in Balong Region, East Kunlun Orogen

    doi: 10.3799/dqkx.2020.286
    • Received Date: 2020-04-27
    • Publish Date: 2021-06-15
    • The study of granite is of great significance to the inversion of the material composition of the lower crust and the deep dynamic process of orogeny. The quartz diorite in Balong region is located in the east of the East Kunlun orogen. In this paper, it presents LA-ICP-MS zircon U-Pb age for the Balong quartz diorite to determine precisely the time of the magmatism, and also presents geochemical, Sr-Nd-Hf isotope data for the Balong quartz diorite to constrain the petrogenesis and tectonic setting. The LA-ICP-MS U-Pb analyses of zircon yielded a weighted mean age of 229.5±1.4 Ma, indicating that it was emplaced in the Late Triassic. The quartz diorites have contents of SiO2 (59.86%-61.83%), Na2O (3.38%-3.55%), Al2O3 (16.38%-17.03%) with Na2O/K2O ratios ranging from 1.25 to 1.39 and Mg# values ranging from 50.1 to 51.2. They are characterized by high silicon and belonging to the high-potassium-calcium-alkaline rock. Meanwhile, they are enriched in large ion lithophile elements (LILEs) and depleted in high field strength elements(HFSEs). In addition, the quartz diorite shows characteristics of high Sr/Y (32.31-40.86) and (La/Yb)N (13.34-15.32) and low contents of Yb (1.34×10-6-1.75×10-6) and Y (13.40×10-6-15.60×10-6). These features indicate that the quartz diorite is similar to adakite. All rock samples are enriched in large ion lithophile elements and light rare earth elements, but depleted in high field strength elements. The (87Sr/86Sr)i ratios range from 0.708 186 to 0.708 428, εNd(t) values range from -5.75 to -5.27 with corresponding two-stage Nd model ages ranging from 1 432 to 1 471 Ma. The εHf(t) values are from -5.2 to -3.2 and two-stage Hf model ages rang from 1 305 to 1 420 Ma. Integrated geological, geochemical and isotopic data suggest that the quartz diorite from Balong region is most likely generated via partial melting of thickened mafic lower continental crust and with subordinate mantle-derived basic magma. In combination with the tectonic evolution of the East Kunlun orogenic belt and the geochronological and geochemical characteristics of contemporary intrusive rocks, it is concluded that the quartz diorite from Balong region was formed in post-collisional extensional tectonic environment. Slab break-off, triggered by continuous collision between the Bayanhar block and EKOB, led to underplating of basic magma formed by partial melting of enriched mantle. The quartz diorite from Balong region was formed by partial melting of lower crust.

       

    • loading
    • Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260. https://doi.org/10.1007/s004100050278
      Castillo, P.R., 2006. An Overview of Adakite Petrogenesis. Chinese Science Bulletin, 51(3): 257-268. https://doi.org/10.1007/s11434-006-0257-7
      Castillo, P.R., 2012. Adakite Petrogenesis. Lithos, 134-135: 304-316. https://doi.org/10.1016/j.lithos.2011.09.013
      Castillo, P.R., Janney, P.E., Solidum, R.U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
      Chen, G.C., Pei, X.Z., Li, R.B., et al., 2013a. Zircon U-Pb Geochronology, Geochemical Characteristics and Geological Significance of Cocoe A'Long Quartz Diorites Body from the Hongshuichuan Area in East Kunlun. Acta Geologica Sinica, 87(2): 178-196(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201302006.htm
      Chen, G.C., Pei, X.Z., Li, R.B., et al., 2013b. Geochronology and Genesis of the Helegang Xilikete Granitic Plutons from the Southern Margin of the Eastern East Kunlun Orogenic Belt and Their Tectonic Significance. Acta Geologica Sinica, 87(10): 1525-1541(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201310004&dbcode=CJFD&year=2013&dflag=pdfdown
      Chen, G.C., Pei, X.Z., Li, R.B., et al., 2018. Age and Lithogenesis of Keri Syenogranite from Eastern Part of East Kunlun Orogenic Belt: Constraint on the Middle Triassic Tectonic Evolution of East Kunlun. Acta Petrologica Sinica, 34(3): 567-585(in Chinese with English abstract). http://www.researchgate.net/publication/330637186_Age_and_lithogenesis_of_Keri_syenogranite_from_eastern_part_of_East_Kunlun_Orogenic_Belt_Constraint_on_the_Middle_Triassic_tectonic_evolution_of_East_Kunlun
      Chen, G.C., Pei, X.Z., Li, R.B., et al., 2019. Lithospheric Extension of the Post-Collision Stage of the Paleo-Tethys Oceanic System in the East Kunlun Orogenic Belt: Insights from Late Triassic Plutons. Earth Science Frontiers, 26(4): 191-208(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201904026.htm
      Chen, J.J., Wei, J.H., Fu, L.B., et al., 2017. Multiple Sources of the Early Mesozoic Gouli Batholith, Eastern Kunlun Orogenic Belt, Northern Tibetan Plateau: Linking Continental Crustal Growth with Oceanic Subduction. Lithos, 292-293: 161-178. https://doi.org/10.1016/j.lithos.2017.09.006
      Chen, L., Sun, Y., Pei, X.Z., et al., 2001. Northernmost Paleo-Tethyan Oceanic Basin in Tibet: Geochronological Evidence from 40Ar/39Ar Age Dating of Dur'ngoi Ophiolite. Chinese Science Bulletin, 46(14): 1203-1205. https://doi.org/10.1007/bf02900603 doi: 10.1007/BF02900603
      Chung, S.L., Liu, D.Y., Ji, J.Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11): 1021-1024. https://doi.org/10.1130/g19796.1 doi: 10.1130/G19796.1
      Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/bf00374895 doi: 10.1007/BF00374895
      Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. https://doi.org/10.1038/347662a0
      Deng, J.F., Wu, Z.X., Yang, J.J., et al., 1995. Crust-Mantle Petrological Structure and Deep Processes along the Golmud-Ejin Qi Geoscience Section. Chinese Journal of Geophysics, 38(Suppl. 2): 130-144(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX5S2.011.htm
      Ding, Q.F., Jiang, S.Y., Sun, F.Y., 2014. Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China: Petrogenesis and Tectonic Implications. Lithos, 205: 266-283. https://doi.org/10.1016/j.lithos.2014.07.015
      Ding, Q.F., Liu, F., Yan, W., 2015. Zircon U-Pb Geochronology and Hf Isotopic Constraints on the Petrogenesis of Early Triassic Granites in the Wulonggou Area of the Eastern Kunlun Orogen, Northwest China. International Geology Review, 57(13): 1735-1754. https://doi.org/10.1080/00206814.2015.1029541
      Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
      Gao, S., Zhang, J.F., Xu, W.L., et al., 2009. Delamination and Destruction of the North China Craton. Chinese Science Bulletin, 54(14): 1962-1973(in Chinese). doi: 10.1360/csb2009-54-14-1962
      Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3-4): 231-282. https://doi.org/10.1016/j.precamres.2003.12.011
      Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 doi: 10.1016/S0016-7037(99)00343-9
      Guo, A.L., Zhang, G.W., Sun, Y.G., et al., 2007. Sr-Nd-Pb Isotopic Geochemistry of Late-Paleozoic Mafic Volcanic Rocks in the Surrounding Areas of the Gonghe Basin, Qinghai Province and Geological Implications. Acta Petrologica Sinica, 23(4): 747-754(in Chinese with English abstract).
      Guo, X.Z., Jia, Q.Z., Li, Y.Z., et al., 2016. Zircon U-Pb Geochronology and Geochemical Characteristics of the Reshui Monzogranite in the Eastern Kunlun and Their Tectonic Significances. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6): 1318-1328(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH201606031.htm
      Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. https://doi.org/10.1016/s0012-821x(04)00007-x doi: 10.1016/S0012-821X(04)00007-X
      Hu, C.B., Li, M., Zha, X.F., et al., 2018. Genesis and Geological Significance of Late Paleozoic Mantle-Derived Magmatism in Qimantag, East Kunlun: A Case Study of Intrusion in Yingzhuagou. Earth Science, 43(12): 4334-4349(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812005.htm
      Hu, F.Y., Ducea, M.N., Liu, S.W., et al., 2017. Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application. Scientific Reports, 7: 7058 https://doi.org/10.1038/s41598-017-07849-7
      Hu, Y., Niu, Y.L., Li, J.Y., et al., 2016. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245: 205-222. https://doi.org/10.1016/j.lithos.2015.05.004
      Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/c2ja30078h
      Huang, H., Niu, Y.L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010
      Kong, J.J., Niu, Y.L., Hu, Y., et al., 2020. Petrogenesis of the Triassic Granitoids from the East Kunlun Orogenic Belt, NW China: Implications for Continental Crust Growth from Syn-Collisional to Post-Collisional Setting. Lithos, 364-365: 105513. https://doi.org/10.1016/j.lithos.2020.105513
      Li, B.L., Zhi, Y.B., Zhang, L., et al., 2015. U-Pb Dating, Geochemistry, and Sr-Nd Isotopic Composition of a Granodiorite Porphyry from the Jiadanggen Cu-(Mo) Deposit in the Eastern Kunlun Metallogenic Belt, Qinghai Province, China. Ore Geology Reviews, 67: 1-10. https://doi.org/10.1016/j.oregeorev.2014.11.008
      Li, R.B., 2012. Research on the Late Paleozoic-Early Mesozoic Orogeny in East Kunlun Orogen (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract).
      Li, R.B., Pei, X.Z., Li, Z.C., et al., 2018. Paleo-Tethys Ocean Subduction in Eastern Section of East Kunlun Orogen: Evidence from the Geochronology and Geochemistry of the Wutuo Pluton. Acta Petrologica Sinica, 34(11): 3399-3421(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201270234073.html
      Li, W.Y., Zhang, Z.W., Gao, Y.B., et al., 2011. Important Metallogenic Events and Tectonic Response of Qinling, Qilian and Kunlun Orogenic Belts. Geology in China, 38(5): 1135-1149(in Chinese with English abstract). http://www.cqvip.com/QK/90050X/201105/39798712.html
      Li, Y.J., Wei, J.H., Santosh, M., et al., 2020. Anisian Granodiorites and Mafic Microgranular Enclaves in the Eastern Kunlun Orogen, NW China: Insights into Closure of the Eastern Paleo-Tethys. Geological Journal, 55(9): 6487-6507. https://doi.org/10.1002/gj.3814
      Liew, T.C., Hofmann, A.W., 1988. Precambrian Crustal Components, Plutonic Associations, Plate Environment of the Hercynian Fold Belt of Central Europe: Indications from Nd and Sr Isotopic Study. Contributions to Mineralogy and Petrology, 98(2): 129-138. https://doi.org/10.1007/bf00402106 doi: 10.1007/BF00402106
      Liu, B., Ma, C.Q., Zhang, J.Y., et al., 2014. 40Ar-39Ar Age and Geochemistry of Subduction-Related Mafic Dikes in Northern Tibet, China: Petrogenesis and Tectonic Implications. International Geology Review, 56(1): 57-73. https://doi.org/10.1080/00206814.2013.818804
      Liu, C.D., Mo, X.X., Luo, Z.H., et al., 2003. Pb-Sr-Nd-O Isotope Characteristics of Granitoids in East Kunlun Orogenic Belt. Acta Geosicientia Sinica, 24(6): 584-588(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200306020.htm
      Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011. LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A'nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication. Acta Geologica Sinica, 85(2): 185-194(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE201102005.htm
      Ludwig, K.R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel, 4. Berkeley Geochronology Center Special Publication, Berkeley. http://www.researchgate.net/publication/301951506_User's_Manual_for_IsoplotEx_rev_300_A_Geochronological_Toolkit_for_Microsoft_Excel
      Luo, M.F., Mo, X.X., Yu, X.H., et al., 2014. Zircon LA-ICP-MS U-Pb Age Dating, Petrogenesis and Tectonic Implications of the Late Triassic Granites from the Xiangride Area, East Kunlun. Acta Petrologica Sinica, 30(11): 3229-3241(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201411010.htm
      Luo, Z.H., Huang, Z.M., Ke, S., 2007. An Overview of Granitoid. Geological Review, 53(Suppl. 1): 180-226 (in Chinese with English abstract).
      Macpherson, C.G., Dreher, S.T., Thirlwall, M.F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4): 581-593. https://doi.org/10.1016/j.epsl.2005.12.034
      Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/s0024-4937(98)00076-0 doi: 10.1016/S0024-4937(98)00076-0
      Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414(in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011AGUFM.T51D2370M
      Moyen, J.F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the "Adakitic Signature". Lithos, 112(3-4): 556-574. https://doi.org/10.1016/j.lithos.2009.04.001
      Nowell, G.M., Kempton, P.D., Noble, S.R., et al., 1998. High Precision Hf Isotope Measurements of MORB and OIB by Thermal Ionisation Mass Spectrometry: Insights into the Depleted Mantle. Chemical Geology, 149(3-4): 211-233. https://doi.org/10.1016/s0009-2541(98)00036-9 doi: 10.1016/S0009-2541(98)00036-9
      Patiño Douce, A.E., 1999. What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society, London, Special Publications, 168(1): 55-75. https://doi.org/10.1144/gsl.sp.1999.168.01.05 doi: 10.1144/GSL.SP.1999.168.01.05
      Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Prouteau, G., Scaillet, B., Pichavant, M., et al., 2001. Evidence for Mantle Metasomatism by Hydrous Silicic Melts Derived from Subducted Oceanic Crust. Nature, 410: 197-200. https://doi.org/10.1038/35065583
      Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0 doi: 10.1016/S0009-2541(99)00106-0
      Rapp, R.P., Watson, E.B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
      Roger, F., Arnaud, N., Gilder, S., et al., 2003. Geochronological and Geochemical Constraints on Mesozoic Suturing in East Central Tibet. Tectonics, 22(4): 1037. https://doi.org/10.1029/2002tc001466 doi: 10.1029/2002TC001466
      Sen, C., Dunn, T., 1994. Dehydration Melting of a Basaltic Composition Amphibolite at 1.5 and 2.0 GPa: Implications for the Origin of Adakites. Contributions to Mineralogy and Petrology, 117(4): 394-409. https://doi.org/10.1007/bf00307273 doi: 10.1007/BF00307273
      Shao, F.L., Niu, Y.L., Liu, Y., et al., 2017. Petrogenesis of Triassic Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau and Their Tectonic Implications. Lithos, 282-283: 33-44. https://doi.org/10.1016/j.lithos.2017.03.002
      Smithies, R.H., 2000. The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 182(1): 115-125. https://doi.org/10.1016/s0012-821x(00)00236-3 doi: 10.1016/S0012-821X(00)00236-3
      Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 doi: 10.1016/S0012-821X(04)00012-3
      Song, K., Ding, Q.F., Zhang, Q., et al., 2020. Zircon U-Pb Geochronology, Hf Isotopes, and Whole-Rock Geochemistry of Hongshuihe Early to Middle Triassic Quartz Diorites and Granites in the Eastern Kunlun Orogen, NW China: Implication for Petrogenesis and Geodynamics. Geological Journal, 55(2): 1507-1528. https://doi.org/10.1002/gj.3517
      Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
      Vernon, R.H., 1984. Microgranitoid Enclaves in Granites: Globules of Hybrid Magma Quenched in a Plutonic Environment. Nature, 309: 438-439. https://doi.org/10.1038/309438a0
      Wang, Y.L., Li, Y.J., Wei, J.H., et al., 2018. Origin of Late Silurian A-Type Granite in Wulonggou Area, East Kunlun Orogen: Zircon U-Pb Age, Geochemistry, Nd and Hf Isotopic Constraints. Earth Science, 43(4): 1219-1236(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201804018.htm
      Wang, Y.W., Wang, J.B., Long, L.L., et al., 2012. Type, Indicator, Mechanism, Model and Relationship with Mineralization of Magma Mixing: A Case Study in North Xinjiang. Acta Petrologica Sinica, 28(8): 2317-2330(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201208003.htm
      Wu, F., Zhang, X.J., Zhang, Y.Q., et al., 2010. Zircon U-Pb Ages for Rhyolitic Tuffs of the Naocangjiangou Formation in the East Kulun Orogenic Belt and Their Implication. Journal of Geomechanics, 16(1): 44-50(in Chinese with English abstract). http://www.researchgate.net/publication/285329979_Zircon_U-Pb_ages_for_rhyolitic_tuffs_of_the_Naocangjiangou_Formation_in_the_east_Kulun_orogenic_belt_and_their_implication
      Xia, R., Qing, M., Wang, C.M., et al., 2014. The Genesis of the Ore-Bearing Porphyry of the Tuoketuo Porphyry Cu-Au(Mo) Deposit in the East Kunlun, Qinghai Province: Constraints from Zircon U-Pb Geochronological and Geochemistry. Journal of Jilin University (Earth Science Edition), 44(5): 1502-1524(in Chinese with English abstract). http://www.researchgate.net/publication/286654334_The_genesis_of_the_ore-bearing_porphyry_of_the_Tuoketuo_porphyry_Cu-AuMo_deposit_in_the_East_Kunlun_Qinghai_Province_Constraints_from_zircon_U-Pb_geochronological_and_geochemistry
      Xiao, W.J., Windley, B.F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254
      Xiong, F.H., 2014. Spatial-Temporal Pattern, Petrogenesis and Geological Implications of Paleo-Tethyan Granitoids in the East Kunlun Orogenic Belt (Eastern Segment) (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Xiong, F.H., Ma, C.Q., Jiang, H.A., et al., 2016. Geochronology and Petrogenesis of Triassic High-K Calc-Alkaline Granodiorites in the East Kunlun Orogen, West China: Juvenile Lower Crustal Melting during Post-Collisional Extension. Journal of Earth Science, 27(3): 474-490. https://doi.org/10.1007/s12583-016-0674-6
      Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2011. LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt. Acta Petrologica Sinica, 27(11): 3350-3364(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical_ysxb98201111016.aspx
      Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2012. The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere. Mineralogy and Petrology, 104(3-4): 211-224. https://doi.org/10.1007/s00710-011-0187-1
      Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic Ⅰ-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863. https://doi.org/10.1144/jgs2013-038
      Xu, J.F., Shinjo, R., Defant, M.J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust? Geology, 30(12): 1111. https://doi.org/10.1130/0091-7613(2002)0301111:oomair>2.0.co;2 doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
      Xu, J.F., Wu, J.B., Wang, Q., et al., 2014. Research Advances of Adakites and Adakitic Rocks in China. Bulletin of Mineralogy, Petrology and Geochemistry, 33(1): 6-13(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201401002.htm
      Xu, Z.Q., Yang, J.S., Li, W.C., et al., 2013. Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6): 1847-1860(in Chinese with English abstract). http://www.cqvip.com/QK/94579X/20136/46670152.html
      Yan, Z., Bian, Q.T., Korchagin, O., et al., 2008. Provenance of Early Triassic Hongshuichuan Formation in the Southern Margin of the East Kunlun Mountains: Constrains from Detrital Framework, Heavy Mineral Analysis and Geochemistry. Acta Petrologica Sinica, 24(5): 1068-1078(in Chinese with English abstract). http://www.oalib.com/paper/1471328
      Yang, J.S., Wang, X.B., Shi, R.D., et al., 2004. The Dur'ngoi Ophiolite in East Kunlun, Northern Qinghai-Tibet Plateau: A Fragment of Paleo-Tethyan Oceanic Crust. Geology in China, 31(3): 225-239(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DIZI200403000.htm
      Yang, J.S., Xu, Z.Q., Ma, C.Q., et al., 2010. Compound Orogeny and Scientific Problems Concerning the Central Orogenic Belt of China. Geology in China, 37(1): 1-11(in Chinese with English abstract). http://www.researchgate.net/publication/281228388_Compound_orogeny_and_scientific_problems_concerning_the_Central_Orogenic_Belt_of_China/download
      Yang, X.M., Sun, F.Y., Zhao, T.F., et al., 2018. Zircon U-Pb Dating, Geochemistry and Tectonic Implications of Akechukesai Gabbro in East Kunlun Orogenic Belt. Geological Bulletin of China, 37(10): 1842-1852(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201810010.htm
      Zhang, H.F., Chen, Y.L., Xu, W.C., et al., 2006. Granitoids around Gonghe Basin in Qinghai Province: Petrogenesis and Tectonic Implications. Acta Petrologica Sinica, 22(12): 2910-2922(in Chinese with English abstract). http://www.oalib.com/paper/1472584
      Zhang, J.Y., Ma, C.Q., Xiong, F.H., et al., 2012. Petrogenesis and Tectonic Significance of the Late Permian-Middle Triassic Calc-Alkaline Granites in the Balong Region, Eastern Kunlun Orogen, China. Geological Magazine, 149(5): 892-908. https://doi.org/10.1017/s0016756811001142 doi: 10.1017/S0016756811001142
      Zhang, J.Y., Ma, C.Q., Xiong, F.H., et al., 2014. Early Paleozoic High-Mg Diorite-Granodiorite in the Eastern Kunlun Orogen, Western China: Response to Continental Collision and Slab Break-off. Lithos, 210-211: 129-146. https://doi.org/10.1016/j.lithos.2014.10.003
      Zhang, M.D., Ma, C.Q., Wang, L.X., et al., 2018. Subduction-Type Magmatic Rocks in Post-Collision Stage: Evidence from Late Triassic Diorite-Porphyrite of Naomuhungou Area, East Kunlun Orogen. Earth Science, 43(4): 1183-1206(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201804016.htm
      Zhang, Q., Jin, W.J., Xiong, X.L., et al., 2009. Characteristics and Implication of O-Type Adakite in China during Different Geological Periods. Geotectonica et Metallogenia, 33(3): 432-447(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGYK200903018&dbcode=CJFD&year=2009&dflag=pdfdown
      Zhang, Q., Wang, Y., Liu, H.T., et al., 2003. On the Space-Time Distribution and Geodynamic Environments of Adakites in China Annex: Controversies over Differing Opinions for Adakites in China. Earth Science Frontiers, 10(4): 385-400(in Chinese with English abstract). http://www.researchgate.net/publication/312984938_On_the_space-time_distribution_and_geodynamic_environments_of_adakites_in_China
      Zhang, Z.B., Tang, J.X., Tang, P., et al., 2019. The Origin of the Mafic Microgranular Enclaves from Jiama Porphyry Cu Polymetallic Deposit, Tibet: Implications for Magma Mixing/Mingling and Mineralization. Acta Petrologica Sinica, 35(3): 934-952(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.19
      Zhang, Z.Q., Chen, J., Yu, F.C., et al., 2019. Sr-Nd-Lu-Hf Isotopic Characteristics and Geological Significance of the Middle Permian Gabbro in Xiwanggou Area, East Kunlun. Mineralogy and Petrology, 39(3): 26-31(in Chinese with English abstract).
      Zhao, X., Fu, L.B., Wei, J.H., et al., 2018. Geochemical Characteristics of An'nage Hornblende Gabbro from East Kunlun Orogenic Belt and Its Constraints on Evolution of Paleo-Tethys Ocean. Earth Science, 43(2): 354-370(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201802002.htm
      Zhao, X., Wei, J.H., Fu, L.B., et al., 2020. Multi-Stage Crustal Melting from Late Permian Back-Arc Extension through Middle Triassic Continental Collision to Late Triassic Post-Collisional Extension in the East Kunlun Orogen. Lithos, 360-361: 105446. https://doi.org/10.1016/j.lithos.2020.105446
      Zorpi, M.J., Coulon, C., Orsini, J.B., 1991. Hybridization between Felsic and Mafic Magmas in Calc-Alkaline Granitoids: A Case Study in Northern Sardinia, Italy. Chemical Geology, 92(1-3): 45-86. https://doi.org/10.1016/0009-2541(91)90049-w doi: 10.1016/0009-2541(91)90049-W
      陈国超, 裴先治, 李瑞保, 等, 2013a. 东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义. 地质学报, 87(2): 178-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201302006.htm
      陈国超, 裴先治, 李瑞保, 等, 2013b. 东昆仑造山带东段南缘和勒冈希里克特花岗岩体时代、成因及其构造意义. 地质学报, 87(10): 1525-1541. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310004.htm
      陈国超, 裴先治, 李瑞保, 等, 2018. 东昆仑东段可日正长花岗岩年龄和岩石成因对东昆仑中三叠世构造演化的制约. 岩石学报, 34(3): 567-585. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201803003.htm
      陈国超, 裴先治, 李瑞保, 等, 2019. 东昆仑古特提斯后碰撞阶段伸展作用: 来自晚三叠世岩浆岩的证据. 地学前缘, 26(4): 191-208. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904026.htm
      邓晋福, 吴宗絮, 杨建军, 等, 1995. 格尔木-额济纳旗地学断面走廊域地壳-上地幔岩石学结构与深部过程. 地球物理学报, 38(增刊2): 130-144 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX5S2.011.htm
      高山, 章军锋, 许文良, 等, 2009. 拆沉作用与华北克拉通破坏. 科学通报, 54(14): 1962-1973. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200914004.htm
      郭安林, 张国伟, 孙延贵, 等, 2007. 青海省共和盆地周缘晚古生代镁铁质火山岩Sr-Nd-Pb同位素地球化学及其地质意义. 岩石学报, 23(4): 747-754. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200704007.htm
      国显正, 贾群子, 栗亚芝, 等, 2016. 东昆仑热水二长花岗岩地球化学特征、年代学及其构造意义. 矿物岩石地球化学通报, 35(6): 1318-1328. doi: 10.3969/j.issn.1007-2802.2016.06.022
      胡朝斌, 李猛, 查显锋, 等, 2018. 东昆仑祁漫塔格晚古生代末期幔源岩浆活动成因及地质意义: 以鹰爪沟岩体为例. 地球科学, 43(12): 4334-4349. doi: 10.3799/dqkx.2018.120
      李瑞保, 2012. 东昆仑造山带(东段)晚古生代-早中生代造山作用研究(博士学位论文). 西安: 长安大学.
      李瑞保, 裴先治, 李佐臣, 等, 2018. 东昆仑东段古特提斯洋俯冲作用——乌妥花岗岩体锆石U-Pb年代学和地球化学证据. 岩石学报, 34(11): 3399-3421. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201811020.htm
      李文渊, 张照伟, 高永宝, 等, 2011. 秦祁昆造山带重要成矿事件与构造响应. 中国地质, 38(5): 1135-1149. doi: 10.3969/j.issn.1000-3657.2011.05.002
      刘成东, 莫宣学, 罗照华, 等, 2003. 东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征. 地球学报, 24(6): 584-588. doi: 10.3321/j.issn:1006-3021.2003.06.020
      刘战庆, 裴先治, 李瑞保, 等, 2011. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义. 地质学报, 85(2): 185-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102005.htm
      罗明非, 莫宣学, 喻学惠, 等, 2014. 东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义. 岩石学报, 30(11): 3229-3241. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411010.htm
      罗照华, 黄忠敏, 柯珊, 2007. 花岗质岩石的基本问题. 地质论评, 53(增刊1): 180-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2007S1025.htm
      莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
      王艺龙, 李艳军, 魏俊浩, 等, 2018. 东昆仑五龙沟地区晚志留世A型花岗岩成因: U-Pb年代学、地球化学、Nd及Hf同位素制约. 地球科学, 43(4): 1219-1236. doi: 10.3799/dqkx.2018.717
      王玉往, 王京彬, 龙灵利, 等, 2012. 岩浆混合作用的类型、标志、机制、模式及其与成矿的关系——以新疆北部为例. 岩石学报, 28(8): 2317-2330. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208003.htm
      吴芳, 张绪教, 张永清, 等, 2010. 东昆仑闹仓坚沟组流纹质凝灰岩锆石U-Pb年龄及其地质意义. 地质力学学报, 16(1): 44-50. doi: 10.3969/j.issn.1006-6616.2010.01.006
      夏锐, 卿敏, 王长明, 等, 2014. 青海东昆仑托克妥Cu-Au(Mo)矿床含矿斑岩成因: 锆石U-Pb年代学和地球化学约束. 吉林大学学报(地球科学版), 44(5): 1502-1524. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201405011.htm
      熊富浩, 2014. 东昆仑造山带东段古特提斯域花岗岩类时空分布、岩石成因及其地质意义(博士学位论文). 武汉: 中国地质大学.
      熊富浩, 马昌前, 张金阳, 等, 2011. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学. 岩石学报, 27(11): 3350-3364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111016.htm
      许继峰, 邬建斌, 王强, 等, 2014. 埃达克岩与埃达克质岩在中国的研究进展. 矿物岩石地球化学通报, 33(1): 6-13. doi: 10.3969/j.issn.1007-2802.2014.01.015
      许志琴, 杨经绥, 李文昌, 等, 2013. 青藏高原中的古特提斯体制与增生造山作用. 岩石学报, 29(6): 1847-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306002.htm
      闫臻, 边千韬, Korchagin, O., 等, 2008. 东昆仑南缘早三叠世洪水川组的源区特征: 来自碎屑组成、重矿物和岩石地球化学的证据. 岩石学报, 24(5): 1068-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200805014.htm
      杨经绥, 王希斌, 史仁灯, 等, 2004. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳. 中国地质, 31(3): 225-239. doi: 10.3969/j.issn.1000-3657.2004.03.001
      杨经绥, 许志琴, 马昌前, 等, 2010. 复合造山作用和中国中央造山带的科学问题. 中国地质, 37(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201001004.htm
      杨锡铭, 孙丰月, 赵拓飞, 等, 2018. 东昆仑阿克楚克塞地区辉长岩地球化学特征、锆石U-Pb年龄及其构造意义. 地质通报, 37(10): 1842-1852. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201810010.htm
      张宏飞, 陈岳龙, 徐旺春, 等, 2006. 青海共和盆地周缘印支期花岗岩类的成因及其构造意义. 岩石学报, 22(12): 2910-2922. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200612008.htm
      张明东, 马昌前, 王连训, 等, 2018. 后碰撞阶段的"俯冲型"岩浆岩: 来自东昆仑瑙木浑沟晚三叠世闪长玢岩的证据. 地球科学, 43(4): 1183-1206. doi: 10.3799/dqkx.2018.715
      张旗, 金惟俊, 熊小林, 等, 2009. 中国不同时代O型埃达克岩的特征及其意义. 大地构造与成矿学, 33(3): 432-447. doi: 10.3969/j.issn.1001-1552.2009.03.015
      张旗, 王焰, 刘红涛, 等, 2003. 中国埃达克岩的时空分布及其形成背景附: 《国内关于埃达克岩的争论》. 地学前缘, 10(4): 385-400. doi: 10.3321/j.issn:1005-2321.2003.04.007
      张泽斌, 唐菊兴, 唐攀, 等, 2019. 西藏甲玛铜多金属矿床暗色包体岩石成因: 对岩浆混合和成矿的启示. 岩石学报, 35(3): 934-952. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201903019.htm
      张志青, 陈静, 余福承, 等, 2019. 东昆仑希望沟中二叠世辉长岩Sr-Nd-Lu-Hf同位素特征及其地质意义. 矿物岩石, 39(3): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201903004.htm
      赵旭, 付乐兵, 魏俊浩, 等, 2018. 东昆仑按纳格角闪辉长岩体地球化学特征及其对古特提斯洋演化的制约. 地球科学, 43(2): 354-370. doi: 10.3799/dqkx.2018.020
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(4)

      Article views (1440) PDF downloads(81) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return