• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 7
    Jul.  2021
    Turn off MathJax
    Article Contents
    Guo Qinghai, Yang Chen, 2021. Tungsten Anomaly of the High-Temperature Hot Springs in the Daggyai Hydrothermal Area, Tibet, China. Earth Science, 46(7): 2544-2554. doi: 10.3799/dqkx.2020.287
    Citation: Guo Qinghai, Yang Chen, 2021. Tungsten Anomaly of the High-Temperature Hot Springs in the Daggyai Hydrothermal Area, Tibet, China. Earth Science, 46(7): 2544-2554. doi: 10.3799/dqkx.2020.287

    Tungsten Anomaly of the High-Temperature Hot Springs in the Daggyai Hydrothermal Area, Tibet, China

    doi: 10.3799/dqkx.2020.287
    • Received Date: 2020-10-07
    • Publish Date: 2021-07-15
    • Extremely high concentrations of tungsten was detected in the hot springs discharged from the Daggyai hydrothermal area, Tibet, and their tungsten to molybdenum ratios are much higher than common natural waters as well. A hydrogeochemical study of typical Daggyai hot springs was carried out, based on which it was found that the tungsten concentrations of the neutral springs are significantly higher than those of the acid springs. The neutral hot springs at Daggyai were formed via the adiabatic cooling or conductive cooling of the parent geothermal fluids ascending from the deep levels to the surface, and the tungsten in these waters is primarily from the contribution of magmatic fluids. In contrast, the slightly acid hot springs are basically a mixture of the steam-heated acid waters and neutral geothermal waters, and the dilution of tungsten-depleted steam-heated waters lowered the tungsten concentrations of these springs to various degrees. In geothermal systems, tungsten behaves generally like chloride, a typical conservative component, and is difficult to precipitate from geothermal water or to be adsorbed by reservoir rocks. However, molybdenum is prone to precipitate from sulfide-rich Daggyai geothermal waters as the form of molybdenite, resulting in the high tungsten to molybdenum ratios of the Daggyai hot springs. Moreover, although sulfide exists in the Daggyai geothermal waters, the major species of tungsten is tungstate instead of thiotungstates. The formation of trace thiotungstates has little effects on the tungsten-involved hydrogeochemical processes.

       

    • loading
    • Arnórsson, S., Óskarsson, N., 2007. Molybdenum and Tungsten in Volcanic Rocks and in Surface and < 100℃ Ground Waters in Iceland. Geochimica et Cosmochimica Acta, 71(2): 284-304. https://doi.org/10.1016/j.gca.2006.09.030
      Chen, X., Deng, X., Zhang, J., et al., 2018. Fluid Inclusions Constraints on the Origin of the Xiaobaishitou W-Mo Deposit in Hami, Xingjiang, NW China. Earth Science, 43 (9): 3086-3099 (in Chinese with English abstract). http://www.researchgate.net/publication/329031227_Fluid_Inclusions_Constraints_on_the_Origin_of_the_Xiaobaishitou_W-Mo_Deposit_in_Hami_Xinjiang_NW_China
      Farnham, I. M., Johannesson, K. H., Singh, A. K., et al., 2003. Factor Analytical Approaches for Evaluating Groundwater Trace Element Chemistry Data. Analytica Chimica Acta, 490(1/2): 123-138. https://doi.org/10.1016/s0003-2670(03)00350-7
      Firdaus, M.L., Norisuye, K., Nakagawa, Y., et al., 2008. Dissolved and Labile Particulate Zr, Hf, Nb, Ta, Mo and W in the Western North Pacific Ocean. Journal of Oceanography, 64(2): 247-257. https://doi.org/10.1007/s10872-008-0019-z
      Giggenbach, W. F., 1992. Isotopic Shifts in Waters from Geothermal and Volcanic Systems along Convergent Plate Boundaries and their Origin. Earth and Planetary Science Letters, 113(4): 495-510. https://doi.org/10.1016/0012-821x(92)90127-h
      Guo, Q. H., Li, Y. M., Luo, L., 2019a. Tungsten from Typical Magmatic Hydrothermal Systems in China and its Environmental Transport. Science of the Total Environment, 657(2-3): 1523-1534. https://doi.org/10.1016/j.scitotenv.2018.12.146
      Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2019b. Magmatic Fluid Input Explaining the Geochemical Anomaly of very High Arsenic in some Southern Tibetan Geothermal Waters. Chemical Geology, 513(3): 32-43. https://doi.org/10.1016/j.chemgeo.2019.03.008
      Guo, Q. H., Liu, M. L., Li, J. X., et al., 2014a. Acid Hot Springs Discharged from the Rehai Hydrothermal System of the Tengchong Volcanic Area (China): Formed Via Magmatic Fluid Absorption or Geothermal Steam Heating? Bulletin of Volcanology, 76(10): 1-12. https://doi.org/10.1007/s00445-014-0868-9
      Guo, Q. H., Nordstrom, D.K., McCleskey, R.B., 2014b. Towards Understanding the Puzzling Lack of Acid Geothermal Springs in Tibet (China): Insight from a Comparison with Yellowstone (USA) and Some Active Volcanic Hydrothermal Systems. Journal of Volcanology and Geothermal Research, 288(Nb2): 94-104. https://doi.org/10.1016/j.jvolgeores.2014.10.005
      Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2017. Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System, Tengchong Volcanic Region, China. Chemical Geology, 453(1): 12-20. https://doi.org/10.1016/j.chemgeo.2017.02.010
      Guo, Q. H., Wang, Y. X., Liu, W., 2010. O, H, and Sr Isotope Evidences of Mixing Processes in Two Geothermal Fluid Reservoirs at Yangbajing, Tibet, China. Environmental Earth Sciences, 59(7): 1589-1597. https://doi.org/10.1007/s12665-009-0145-y
      Hall, G. E. M., Jefferson, C. W., Michel, F. A., 1988. Determination of W and Mo in Natural Spring Waters by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometry) and ICP-MS (Inductively Coupled Plasma Mass Spectrometry): Application to South Nahanni River Area, N.W.T., Canada. Journal of Geochemical Exploration, 30(1/2/3): 63-84. https://doi.org/10.1016/0375-6742(88)90050-7
      Johannesson, K.H., Lyons, W.B., Graham, E.Y., Welch, K.A., 2000. Oxyanion Concentrations in Eastern Sierra Nevada Rivers-3. Boron, Molybdenum, Vanadium, and Tungsten. Aquatic Geochemistry, 6(1): 19-46. doi: 10.1023/A:1009622219482
      Kalinich, J. F., Emond, C. A., Dalton, T. K., et al., 2005. Embedded Weapons-Grade Tungsten Alloy Shrapnel Rapidly Induces Metastatic High-Grade Rhabdomyosarcomas in F344 Rats. Environmental Health Perspectives, 113(6): 729-734. https://doi.org/10.1289/ehp.7791
      Kelly, A. D. R., Lemaire, M., Young, Y. K., et al., 2012. In Vivo Tungsten Exposure Alters B-Cell Development and Increases DNA Damage in Murine Bone Marrow. Toxicological Sciences, 131(2): 434-446. https://doi.org/10.1093/toxsci/kfs324
      Kishida, K., Sohrin, Y., Okamura, K., et al., 2004. Tungsten Enriched in Submarine Hydrothermal Fluids. Earth and Planetary Science Letters, 222(3/4): 819-827. https://doi.org/10.1016/j.epsl.2004.03.034
      Kletzin, A., Adams, M. W. W., 1996. Tungsten in Biological Systems. FEMS Microbiology Reviews, 18(1): 5-63. https://doi.org/10.1111/j.1574-6976.1996.tb00226.x
      Konhauser, K. O., Powell, M. A., Fyfe, W. S., et al., 1997. Trace Element Chemistry of Major Rivers in Orissa State, India. Environmental Geology, 29(1/2): 132-141. https://doi.org/10.1007/s002540050111
      Koutsospyros, A., Braida, W., Christodoulatos, C., et al., 2006. A Review of Tungsten: From Environmental Obscurity to Scrutiny. Journal of Hazardous Materials, 136(1): 1-19. https://doi.org/10.1016/j.jhazmat.2005.11.007
      Krauskopf, K.B., 1974. Tungsten. In: Wedepohl, H.K., ed., Handbook of Geochemistry, Vol. 5. Springer, New York.
      Marquet, P., Franç ois, B., Vignon, P., et al., 1996. A Soldier Who Had Seizures after Drinking Quarter of a Litre of Wine. The Lancet, 348(9034): 1070. https://doi.org/10.1016/s0140-6736(96)05459-1
      Marquet, P., Franç ois, B., Lotfi, H., et al., 1997. Tungsten Determination in Biological Fluids, Hair and Nails by Plasma Emission Spectrometry in a Case of Severe Acute Intoxication in Man. Journal of Forensic Sciences, 42(3): 14162J. https://doi.org/10.1520/jfs14162j
      McCleskey, R. B., Nordstrom, D. K., Susong, D. D., et al., 2010. Source and Fate of Inorganic Solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA. Ⅱ. Trace Element Chemistry. Journal of Volcanology and Geothermal Research, 196(3/4): 139-155. https://doi.org/10.1016/j.jvolgeores.2010.05.004
      Mohajerin, T. J., Helz, G. R., White, C. D., et al., 2014. Tungsten Speciation in Sulfidic Waters: Determination of Thiotungstate Formation Constants and Modeling their Distribution in Natural Waters. Geochimica et Cosmochimica Acta, 144(53): 157-172. https://doi.org/10.1016/j.gca.2014.08.037
      Sheppard, P. R., Ridenour, G., Speakman, R. J., et al., 2006. Elevated Tungsten and Cobalt in Airborne Particulates in Fallon, Nevada: Possible Implications for the Childhood Leukemia Cluster. Applied Geochemistry, 21(1): 152-165. https://doi.org/10.1016/j.apgeochem.2005.09.012
      Sheppard, P. R., Speakman, R. J., Ridenour, G., et al., 2007. Temporal Variability of Tungsten and Cobalt in Fallon, Nevada. Environmental Health Perspectives, 115(5): 715-719. https://doi.org/10.1289/ehp.9451
      Smith, G.R., 1994. Materials Flow of Tungsten in the United States. US Department of the Interior, Bureau of Mines, Information Circular, C9388, New York.
      Smith, R.M., Martell, A.E., 2004. NIST Standard Reference Database 46: NIST Critically Selected Stability Constants of Metal Complexes Database. US Department of Commerce Technology Administration, New York.
      Sohrin, Y., Isshiki, K., Kuwamoto, T., et al., 1987. Tungsten in North Pacific Waters. Marine Chemistry, 22(1): 95-103. https://doi.org/10.1016/0304-4203(87)90051-x
      Sohrin, Y., Matsui, M., Nakayama, E., 1999. Contrasting Behavior of Tungsten and Molybdenum in the Okinawa Trough, the East China Sea and the Yellow Sea. Geochimica et Cosmochimica Acta, 63(19/20): 3457-3466. https://doi.org/10.1016/s0016-7037(99)00273-2
      Stefánsson, A., Arnórsson, S., 2005. The Geochemistry of As, Mo, Sb, and W in Natural Geothermal Waters, Iceland, Proceedings World Geothermal Congress, Antalaya, Turkey.
      Steinberg, K. K., Relling, M. V., Gallagher, M. L., et al., 2007. Genetic Studies of a Cluster of Acute Lymphoblastic Leukemia Cases in Churchill County, Nevada. Environmental Health Perspectives, 115(1): 158-164. https://doi.org/10.1289/ehp.9025
      Tan, H. B., Zhang, Y. F., Zhang, W. J., et al., 2014. Understanding the Circulation of Geothermal Waters in the Tibetan Plateau Using Oxygen and Hydrogen Stable Isotopes. Applied Geochemistry, 51: 23-32. https://doi.org/10.1016/j.apgeochem.2014.09.006
      Tyrrell, J., Galloway, T. S., Abo-Zaid, G., et al., 2013. High Urinary Tungsten Concentration is Associated with Stroke in the National Health and Nutrition Examination Survey 1999-2010. PLoS ONE, 8(11): e77546. https://doi.org/10.1371/journal.pone.0077546
      Van der Sloot, H. A., Hoede, D., Wijkstra, J., et al., 1985. Anionic Species of V, As, Se, Mo, Sb, Te and W in the Scheldt and Rhine Estuaries and the Southern Bight (North Sea). Estuarine, Coastal and Shelf Science, 21(5): 633-651. https://doi.org/10.1016/0272-7714(85)90063-0
      Witten, M. L., Sheppard, P. R., Witten, B. L., 2012. Tungsten Toxicity. Chemico-Biological Interactions, 196(3): 87-88. https://doi.org/10.1016/j.cbi.2011.12.002
      Xu, P., Zheng, Y., Yang, Z., et al., 2019. Sources of Ore-Forming Fluids and Materials of Jiagangxueshan W-Mo Deposit. Earth Science, 44(6): 1974-1986 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906016.htm
      Yan, G.Q., Wang, X.X., Huang, Y., et al., 2020. Constraint of Pb Isotope on Ore-Forming Source Origin of Nuri Polymetallic Deposit, Tibet. Earth Science, 45(1): 31-42 (in Chinese with English abstract).
      Zhang, Z., Zhu, M., Liu, S., et al., 1982. Preliminary Study of Hydrogeochemistry of Thermal Waters in Tibet. Acta Scientiarum Naturalium Universitatis Pekinensis, 1(3): 88-96 (in Chinese with English abstract).
      Zheng, M., Wang, Q., Duo, J., et al., 1995. New Types of Hydrothermal Mineralization: Cesium Sinter Deposit in Tibet. Geology Press, Beijing (in Chinese).
      陈叙安, 邓小华, 张静, 等, 2018. 新疆哈密小白石头钨钼矿床流体包裹体及矿床成因. 地球科学, 43(9): 3086-3099. doi: 10.3799/dqkx.2018.171
      徐培言, 郑远川, 杨竹森, 等, 2019. 西藏甲岗雪山钨钼矿床成矿流体及成矿物质来源. 地球科学, 44(6): 1974-1986. doi: 10.3799/dqkx.2019.066
      闫国强, 王欣欣, 黄勇, 等, 2020. Pb同位素对努日铜钼钨多金属矿床成矿物源的制约. 地球科学, 45(1): 31-42. doi: 10.3799/dqkx.2019.191
      张知非, 朱梅湘, 刘时彬, 等, 1982. 西藏水热地球化学的初步研究. 北京大学学报(自然科学版), 18(3): 88-96. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198203009.htm
      郑绵平, 王秋霞, 多吉, 等, 1995. 水热成矿新类型——西藏铯硅华矿床. 北京: 地质出版社, 1-114.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(4)

      Article views (1429) PDF downloads(80) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return