• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 1
    Jan.  2022
    Turn off MathJax
    Article Contents
    Zhao Bin, Lü Wenchao, He Gaowen, Zhang Baojin, Wei Zhenquan, Ning Zijie, Zhang Xudong, 2022. Sedimentary Processes of Weijia Guyot and Implications for Western Pacific Seamount Evolution. Earth Science, 47(1): 357-367. doi: 10.3799/dqkx.2020.291
    Citation: Zhao Bin, Lü Wenchao, He Gaowen, Zhang Baojin, Wei Zhenquan, Ning Zijie, Zhang Xudong, 2022. Sedimentary Processes of Weijia Guyot and Implications for Western Pacific Seamount Evolution. Earth Science, 47(1): 357-367. doi: 10.3799/dqkx.2020.291

    Sedimentary Processes of Weijia Guyot and Implications for Western Pacific Seamount Evolution

    doi: 10.3799/dqkx.2020.291
    • Received Date: 2020-04-29
      Available Online: 2022-02-11
    • Publish Date: 2022-01-20
    • Sedimentary processes of seamounts are closely related to global paleoclimate change and paleoceanography evolution. The Weijia Guyot retained the complete sedimentary records since the Late Mesozoic, which made Weijia Guyot an ideal area for tectonic evolution studies of seamounts in the western Pacific Ocean. Based on the results from sub-bottom profiling, ocean drilling, and the latest research, in this paper it explores the sedimentary process of Weijia Guyot since Late Mesozoic by studying the sedimentary characteristics, volcanic activity and subsidence rate of the seamount. There are three sedimentary units on the summit of Weijia Guyot. Direct evidence of rejuvenated volcanism during Eocene is found in this paper, and deposition rate of Weijia Guyot is determined as approximately 6.03 mm/ka since Middle Miocene (~11.6 Ma). The evolution model of Weijia Guyot is established for the first time, which is being divided into seven main phases. New perspective about the subsidence rate of Weijia Guyot is revealed: the subsidence rate was low before Oligocene, and the water depth at the summit ranged within hundreds of meters; subsequently, the subsidence speeded up during Early Miocene (~20 Ma) after an inflection point, and it may be related to the rapid change of the direction of the Pacific plate movement during this period.

       

    • loading
    • Abrams, L. J., Larson, R. L., Shipley, T. H., et al., 1992. The Seismic Stratigraphy and Sedimentary History of the East Mariana and Pigafetta Basins of the Western Pacific. Proceedings of the Ocean Drilling Program, 129: 551-569. https://doi.org/10.2973/odp.proc.sr.129.143.1992
      Asavin, A. M., Kubrakova, I. V., Mel'nikov, M. E., et al., 2010. Geochemical Zoning in Ferromanganese Crusts of Ita-Mai Tai Guyot. Geochemistry International, 48(5): 423-445. https://doi.org/10.1134/s0016702910050010
      Barrett, P., 2003. Cooling a Continent. Nature, 421(6920): 221-223. https://doi.org/10.1038/421221a
      Coxall, H. K., Wilson, P. A., Pälike, H., et al., 2005. Rapid Stepwise Onset of Antarctic Glaciation and Deeper Calcite Compensation in the Pacific Ocean. Nature, 433(7021): 53-57. https://doi.org/10.1038/nature03135
      Du, D. W., Ren, X. W., Yan, S. J., et al., 2017. An Integrated Method for the Quantitative Evaluation of Mineral Resources of Cobalt-Rich Crusts on Seamounts. Ore Geology Reviews, 84: 174-184. https://doi.org/10.1016/j.oregeorev.2017.01.011
      Galeotti, S., DeConto, R., Naish, T., et al., 2016. Antarctic Ice Sheet Variability across the Eocene-Oligocene Boundary Climate Transition. Science, 352(6281): 76-80. https://doi.org/10.1126/science.aab0669
      Hassan, R., Müller, R. D., Gurnis, M., et al., 2016. A Rapid Burst in Hotspot Motion through the Interaction of Tectonics and Deep Mantle Flow. Nature, 533(7602): 239-242. https://doi.org/10.1038/nature17422
      He, G.W., Liang, D.H., Song, C.B., et al., 2005. Determining the Distribution Boundary of Cobalt-Rich Crusts of Guyot by Synchronous Application of Sub-Bottom Profiling and Deep-Sea Video Recording. Earth Science, 30(4): 509-512 (in Chinese with English abstract).
      He, G. W., Ma, W. L., Song, C. B., et al., 2011. Distribution Characteristics of Seamount Cobalt-Rich Ferromanganese Crusts and the Determination of the Size of Areas for Exploration and Exploitation. Acta Oceanologica Sinica, 30(3): 63-75. https://doi.org/10.1007/s13131-011-0120-9
      Hesse, R., 1973. Diagenesis of a Seamount Oolite from the West Pacific, Leg 20, DSDP. Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, D.C. . https://doi.org/10.2973/dsdp.proc.20.119.1973
      Hirano, N., Ogawa, Y., Saito, K., 2002. Long-Lived Early Cretaceous Seamount Volcanism in the Mariana Trench, Western Pacific Ocean. Marine Geology, 189(3-4): 371-379. https://doi.org/10.1016/s0025-3227(02)00445-0
      Koppers, A. A. P., Staudigel, H., Wijbrans, J. R., et al., 1998. The Magellan Seamount Trail: Implications for Cretaceous Hotspot Volcanism and Absolute Pacific Plate Motion. Earth and Planetary Science Letters, 163(1-4): 53-68. https://doi.org/10.1016/s0012-821x(98)00175-7
      Lee, T. G., Hein, J. R., Lee, K., et al., 2005. Sub-Seafloor Acoustic Characterization of Seamounts near the Ogasawara Fracture Zone in the Western Pacific Using Chirp (3-7 kHz) Subbottom Profiles. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 52(10): 1932-1956. https://doi.org/10.1016/j.dsr.2005.04.009
      Lee, T. G., Lee, K., Hein, J. R., et al., 2009. Geophysical Investigation of Seamounts near the Ogasawara Fracture Zone, Western Pacific. Earth, Planets and Space, 61(3): 319-331. https://doi.org/10.1186/bf03352914
      Lee, T. G., Lee, S. M., Moon, J. W., et al., 2003. Paleomagnetic Investigation of Seamounts in the Vicinity of Ogasawara Fracture Zone Northwest of the Marshall Islands, Western Pacific. Earth, Planets and Space, 55(6): 355-360. https://doi.org/10.1186/bf03351769
      Li, S.Z., Cao, X.Z., Wang, G.Z., et al., 2019. Meso- Cenozoic Tectonic Evolution and Plate Reconstruction of the Pacific Plate. Journal of Geomechanics, 25(5): 642-677 (in Chinese with English abstract).
      Liu, Z., Alain, T., Steven, C.C., et al., 2003. Quaternary Clay Mineralogy in the Northern South China Sea (ODP Site 1146)-Implications for Oceanic Current Transport and East Asian Monsoon Evolution. Science China Earth Sciences, 46(12): 1223. https://doi.org/10.1360/02yd0107
      Mel'nikov, M. E., Pletnev, S. P., Sedysheva, T. E., et al., 2012. New Data on the Structure of the Sedimentary Section on the Ita Mai Tai Guyot (Magellan Seamounts, Pacific Ocean). Russian Journal of Pacific Geology, 6(3): 217-229. https://doi.org/10.1134/s1819714012030037
      Mel'nikov, M. E., Tugolesov, D. D., Pletnev, S. P., 2010. The Structure of the Incoherent Sediments in the Ita Mai Tai Guyot (Pacific Ocean) Based on Geoacoustic Profiling Data. Oceanology, 50(4): 582-590. https://doi.org/10.1134/s0001437010040144
      Müller, R. D., Sdrolias, M., Gaina, C., et al., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World's Ocean Crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. https://doi.org/10.1029/2007gc001743
      Müller, R. D., Zahirovic, S., Williams, S. E., et al., 2019. A Global Plate Model Including Lithospheric Deformation along Major Rifts and Orogens since the Triassic. Tectonics, 38(6): 1884-1907. https://doi.org/10.1029/2018tc005462
      Nakanishi, M., Tamaki, K., Kobayashi, K., 1989. Mesozoic Magnetic Anomaly Lineations and Seafloor Spreading History of the Northwestern Pacific. Journal of Geophysical Research: Solid Earth, 94(B11): 15437-15462. https://doi.org/10.1029/jb094ib11p15437
      Pan, J.H., Liu, S.Q., Zhong, S.L., 2002. Rasearch on the Age of Cobalt-Rich Crusts in Western Pacific. Geological Review, 48(5): 463-467 (in Chinese with English abstract).
      Pearson, P. N., van Dongen, B. E., Nicholas, C. J., et al., 2007. Stable Warm Tropical Climate through the Eocene Epoch. Geology, 35(3): 211-214. https://doi.org/10.1130/g23175a.1
      Qi, J.H., Wu, Z.Q., Zhang, X.H., et al., 2020. Deep Seismic Evidence of Cenozoic Tectonic Migration in the Western Pacific Back-Arc Area. Earth Science, 45(7): 2495-2507 (in Chinese with English abstract).
      Ren, J.B., He, G.W., Yao, H.Q., et al., 2016. Geochemistry and Significance of REE and PGE of the Cobalt-Rich Crusts from West Pacific Ocean Seamounts. Earth Science, 41(10): 1745-1757 (in Chinese with English abstract).
      Roberts, A. P., Lehman, B., Weeks, R. J., et al., 1997. Relative Paleointensity of the Geomagnetic Field over the Last 200 000 Years from ODP Sites 883 and 884, North Pacific Ocean. Earth and Planetary Science Letters, 152(1-4): 11-23. https://doi.org/10.1016/S0012-821x(97)00132-5
      Staudigel, H., Clague, D.A., 2010. The Geological History of Deep-Sea Volcanoes: Biosphere, Hydrosphere, and Lithosphere Interactions. Oceanography, 23(1): 58-71. https://doi.org/10.5670/oceanog.2010.62
      Staudigel, H., Koppers, A. A. P., 2015. Seamounts and Island Building. The Encyclopedia of Volcanoes. Elsevier, Amsterdam, 405-421. https://doi.org/10.1016/b978-0-12-385938-9.00022-5
      Staudigel, H., Park, K. H., Pringle, M., et al., 1991. The Longevity of the South Pacific Isotopic and Thermal Anomaly. Earth and Planetary Science Letters, 102(1): 24-44. https://doi.org/10.1016/0012-821x(91)90015-a
      Suo, Y.H., Li, S.Z., Cao, X.Z., et al., 2017. Mesozoic- Cenozoic Inversion Tectonics of East China and Its Implications for the Subduction Process of the Oceanic Plate. Earth Science Frontiers, 24(4): 249-267 (in Chinese with English abstract).
      Tang, L. M., Dong, Y. H., Chu, F. Y., et al., 2019. Geochemistry and Age of Seamounts in the West Pacific: Mantle Processes and Petrogenetic Implications. Acta Oceanologica Sinica, 38(1): 71-77. https://doi.org/10.1007/s13131-019-1371-0
      Tripati, A., Backman, J., Elderfield, H., et al., 2005. Eocene Bipolar Glaciation Associated with Global Carbon Cycle Changes. Nature, 436(7049): 341-346. https://doi.org/10.1038/nature03874
      Wedgeworth, B., Kellogg, J., 1987. A 3-D Gravity-Tectonic Study of Ita Mai Tai Guyot: An Uncompensated Seamount in the East Mariana Basin. Seamounts, Islands, and Atolls. American Geophysical Union, Washington, D. C., 43: 73-84. https://doi.org/10.1029/gm043p0073
      Xu, Z., Zheng, Y.F., 2019. Crust-Mantle Interaction in the Paleo-Pacific Subduction Zone: Geochemical Evidence from Cenozoic Continental Basalts in Eastern China. Earth Science, 44(12): 4135-4143 (in Chinese with English abstract).
      Yang, Y., He, G.W., Liu, F.L., et al., 2016. Gravity and Magnetic Anomalies of Jiaxie Guyots and Their Structural and Sedimentary Characteristics. Marine Geology & Quaternary Geology, 36(1): 107-113 (in Chinese with English abstract).
      Zhang, H.S., Han, Z.B., Lei, J.J., et al., 2014. Calcareous Nannofossil Biostratigraphy and Growth Periods of Co-Rich Crusts from Pacific Seamounts. Earth Science, 39(7): 775-783 (in Chinese with English abstract).
      Zhang, H. S., Hu, J., Zhao, J., et al., 2015. Variations of Calcareous Nannofossils of Cobalt-Rich Crusts and Geological Records at the Eocene-Oligocene Transition in Western Pacific Seamounts. Scientia Sinica Terrae, 45(4): 508-519 (in Chinese). doi: 10.1360/zd-2015-45-4-508
      Zhao, B., Lü, W.C., Zhang, X.Y., et al., 2020. Sedimentary Characteristics and Cobalt-Rich Crust Resource Potential of Weijia Guyot in the Western Pacific Ocean. Geological Bulletin of China, 39(1): 18-26 (in Chinese with English abstract). http://www.researchgate.net/publication/339746124_Sedimentary_characteristics_and_cobalt-rich_crust_resource_potential_of_Weijia_Guyot_in_the_Western_Pacific_Ocean
      Zhao, B., Wei, Z. Q., Yang, Y., et al., 2019. Sedimentary Characteristics and the Implications of Cobalt-Rich Crusts Resources at Caiwei Guyot in the Western Pacific Ocean. Marine Georesources & Geotechnology, 38(9): 1037-1045. https://doi.org/10.1080/1064119x.2019.1648615
      Zhao, B., Yang, Y., Zhang, X. Y., et al., 2020. Sedimentary Characteristics Based on Sub-Bottom Profiling and the Implications for Mineralization of Cobalt-Rich Ferromanganese Crusts at Weijia Guyot, Western Pacific Ocean. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 158: 103223. https://doi.org/10.1016/j.dsr.2020.103223
      Zhao, L.H., Jin, X.L., Gao, J.Y., et al., 2010. The Effective Elastic Thickness of Lithosphere in the Mid-West Pacific and Its Geological Significance. Earth Science, 35(4): 637-644 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201004016.htm
      何高文, 梁东红, 宋成兵, 等, 2005. 浅地层剖面测量和海底摄像联合应用确定平顶海山富钴结壳分布界线. 地球科学, 30(4): 509-512. doi: 10.3321/j.issn:1000-2383.2005.04.017
      李三忠, 曹现志, 王光增, 等, 2019. 太平洋板块中‒新生代构造演化及板块重建. 地质力学学报, 25(5): 642-677. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905005.htm
      潘家华, 刘淑琴, 钟石兰, 2002. 西太平洋富钴结壳形成年代的探讨. 地质论评, 48(5): 463-467. doi: 10.3321/j.issn:0371-5736.2002.05.003
      祁江豪, 吴志强, 张训华, 等, 2020. 西太平洋弧后地区新生代构造迁移的深部地震证据. 地球科学, 45(7): 2495-2507. doi: 10.3799/dqkx.2020.031
      任江波, 何高文, 姚会强, 等, 2016. 西太平洋海山富钴结壳的稀土和铂族元素特征及其意义. 地球科学, 41(10): 1745-1757. doi: 10.3799/dqkx.2016.503
      索艳慧, 李三忠, 曹现志, 等, 2017. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程. 地学前缘, 24(4): 249-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704031.htm
      徐峥, 郑永飞, 2019. 中国东部新生代玄武岩记录古太平洋俯冲带壳幔相互作用. 地球科学, 44(12): 4135-4143. doi: 10.3799/dqkx.2019.273
      杨永, 何高文, 刘方兰, 等, 2016. 嘉偕平顶山群重磁异常及其构造和沉积特征. 海洋地质与第四纪地质, 36(1): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201601013.htm
      张海生, 韩正兵, 雷吉江, 等, 2014. 太平洋海山富钴结壳钙质超微化石生物地层学及生长过程. 地球科学, 39(7): 775-783. doi: 10.3799/dqkx.2014.073
      张海生, 胡佶, 赵军, 等, 2015. 西太平洋海山富钴结壳钙质超微化石变化与E/O界限的地质记录. 中国科学: 地球科学, 45(4): 508-519. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201504011.htm
      赵斌, 吕文超, 张向宇, 等, 2020. 西太平洋维嘉平顶山沉积特征及富钴结壳资源意义. 地质通报, 39(1): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202001004.htm
      赵俐红, 金翔龙, 高金耀, 等, 2010. 中西太平洋海山区的岩石圈有效弹性厚度及其地质意义. 地球科学, 35(4): 637-644. doi: 10.3799/dqkx.2010.078
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (1981) PDF downloads(157) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return