Citation: | Liu Xiangchong, Xiao Changhao, Zhang Shuanhong, Hu Guohui, Li Jianfeng, Wang Chenguang, 2020. Whether Sanguliu Granite Provided Energy Required for Forming Wulong Gold Deposit, Liaoning Province, China?. Earth Science, 45(11): 3998-4013. doi: 10.3799/dqkx.2020.292 |
Bao, Z.Y., 1992. Onset and Stability of Thermally-Driven Fluid Convection in a Vertical Rock Crack and Their Implication for Hydrothermal Ore-Forming Processes. Earth Science, 17(Suppl.1):57-67 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZDDY199200006.htm
|
Buret, Y., von Quadt, A., Heinrich, C., et al., 2016. From a Long-Lived Upper-Crustal Magma Chamber to Rapid Porphyry Copper Emplacement:Reading the Geochemistry of Zircon Crystals at Bajo de La Alumbrera (NW Argentina). Earth and Planetary Science Letters, 450:120-131. https://doi.org/10.1016/j.epsl.2016.06.017
|
Burnham, C. W., 1985. Energy Release in Subvolcanic Environments; Implications for Breccia Formation. Economic Geology, 80(6):1515-1522. https://doi.org/10.2113/gsecongeo.80.6.1515
|
Burnham, C.W., 1997. Magmas and Hydrothermal Fluids. In: Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits (3rd Edition). John Wiley & Sons, New York, 63-123.
|
Candela, P. A., Blevin, P. L., 1995. Do Some Miarolitic Granites Preserve Evidence of Magmatic Volatile Phase Permeability. Economic Geology, 90(8):2310-2316. https://doi.org/10.2113/gsecongeo.90.8.2310
|
Cathles, L. M., 1977. An Analysis of the Cooling of Intrusives by Ground-Water Convection Which Includes Boiling. Economic Geology, 72(5):804-826. https://doi.org/10.2113/gsecongeo.72.5.804
|
Cen, K., Tian, Z.X., 2012. Ore-Forming System around Magma:Model of Spatial Zonation for Magmatic Rock and Deposit Set. Geoscience, 26(5):1051-1057 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201205027.htm
|
Chi, G.X., Xue, C.J., 2011. An Overview of Hydrodynamic Studies of Mineralization. Geoscience Frontiers, 2(3):423-438. doi: 10.1016/j.gsf.2011.05.001
|
Cui, B., Li, Z., 1998. Synthetic Metallogenic Prediction in the Material Field-Energy Field-Spatial Field. Geoscience, 12(4):501-505 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ804.006.htm
|
Dutrow, B. L., Travis, B. J., Gable, C. W., et al., 2001. Coupled Heat and Silica Transport Associated with Dike Intrusion into Sedimentary Rock:Effects on Isotherm Location and Permeability Evolution. Geochimica et Cosmochimica Acta, 65(21):3749-3767. https://doi.org/10.1016/s0016-7037(01)00704-9
|
Eldursi, K., Branquet, Y., Guillou-Frottier, L., et al., 2009. Numerical Investigation of Transient Hydrothermal Processes around Intrusions:Heat-Transfer and Fluid-Circulation Controlled Mineralization Patterns. Earth and Planetary Science Letters, 288(1/2):70-83. https://doi.org/10.1016/j.epsl.2009.09.009
|
Gerdes, M. L., Baumgartner, L. P., Person, M., 1998. Convective Fluid Flow through Heterogeneous Country Rocks during Contact Metamorphism. Journal of Geophysical Research:Solid Earth, 103(B10):23983-24003. https://doi.org/10.1029/98jb02049
|
Ghiorso, M.S., 1991. Temperatures in and around Cooling Magma Bodies. In: Perchuk, L.L., ed., Progress in Metamorphic and Magmatic Petrology. Cambridge University Press, New York, 387-410.
|
Gu, Y.C., 2019. The Mesozoic Tectonic-Magmatic Constraints on the Gold Mineralization in Wulong Gold Mining Area, Eastern Liaoning (Dissertation). China University of Geosciences, Beijing, 156 (in Chinese with English abstract).
|
Hanson, R.B., 1995. The Hydrodynamics of Contact Metamorphism. Geological Society of America Bulletin, 107(5):595-611. doi: 10.1130/0016-7606(1995)107<0595:THOCM>2.3.CO;2
|
Hu, G.H., Zhang, Q.Q., Li, J.F., et al., 2020. Emplacement Ages of Mesozoic Granites in the Liaodong Area:Constraints from Zircon and Monazite U-Pb Dating. Earth Science, 45(11):3962-3981 (in Chinese with English abstract).
|
Ingebritsen, S. E., Geiger, S., Hurwitz, S., et al., 2010. Numerical Simulation of Magmatic Hydrothermal Systems. Reviews of Geophysics, 48(1):1-33. https://doi.org/10.1029/2009rg000287
|
Lange, R. A., Cashman, K. V., Navrotsky, A., 1994. Direct Measurements of Latent Heat during Crystallization and Melting of a Ugandite and an Olivine Basalt. Contributions to Mineralogy and Petrology, 118(2):169-181. https://doi.org/10.1007/bf01052867
|
Li, S.Z., Liu, J.Z., Zhao, G.C., et al., 2004. Key Geochronology of Mesozoic Deformation in the Eastern Block of the North China Craton and Its Constraints on Regional Tectonics:A Case of Jiaodong and Liaodong Peninsula. Acta Petrologica Sinica, 20(3):633-646 (in Chinese with English abstract). http://www.researchgate.net/publication/232696982_Key_geochronology_of_Mesozoic_deformation_in_the_Eastern_Block_of_the_North_China_Craton_and_its_constrains_on_regional_tectonics-a_case_of_Jiaodong_and_Liaodong_Peninsula
|
Li, Y., Selby, D., Condon, D., et al., 2017. Cyclic Magmatic-Hydrothermal Evolution in Porphyry Systems:High-Precision U-Pb and Re-Os Geochronology Constraints on the Tibetan Qulong Porphyry Cu-Mo Deposit. Economic Geology, 112(6):1419-1440. https://doi.org/10.5382/econgeo.2017.4515
|
Liu, J., Zhang, L. J., Wang, S. L., et al., 2019. Formation of the Wulong Gold Deposit, Liaodong Gold Province, NE China:Constraints from Zircon U-Pb Age, Sericite Ar-Ar Age, and H-O-S-He Isotopes. Ore Geology Reviews, 109:130-143. https://doi.org/10.1016/j.oregeorev.2019.04.013
|
Liu, Y. D., 1987. Discussion on the Geological Characteristics and Genesis of Granite in Sanguliu of Liaoning. Liaoning Geology, 3:245-260 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LOAD198703005.htm
|
Lv, Y.F., Li, J.F., Zhang, M., 1993. The Structural Character of Syntectonic Granite Body with Forceful Emplacement and Its Relationship with the Gold Deposit:The Example of Sanguliu Granite Body, Dandong. Land & Resources, 1(2):120-128 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LOAD199302001.htm
|
Ma, C.Q., Li, Y.Q., 2017. Incremental Growth of Granitoid Plutons and Highly Crystalline Magmatic Differentiation. Acta Petrologica Sinica, 33(5):1479-1488 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201705007.htm
|
Ma, Y.M., Lu, X.C., Zhang, X.F., et al., 2013. A Numerical Simulation of the Heat Transfer in Granite Intrusion-Mudstone Contact Zone and Its Geological Implication:A Case Study from Eastern Guangdong Province, China. Geological Journal of China Universities, 19(2):307-315 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201302013.htm
|
Nabelek, P. I., Hofmeister, A. M., Whittington, A. G., 2012. The Influence of Temperature-Dependent Thermal Diffusivity on the Conductive Cooling Rates of Plutons and Temperature-Time Paths in Contact Aureoles. Earth and Planetary Science Letters, 317/318:157-164. https://doi.org/10.1016/j.epsl.2011.11.009
|
Ni, P., Wang, X. D., Wang, G. G., et al., 2015. An Infrared Microthermometric Study of Fluid Inclusions in Coexisting Quartz and Wolframite from Late Mesozoic Tungsten Deposits in the Gannan Metallogenic Belt, South China. Ore Geology Reviews, 65(4):1062-1077. http://www.sciencedirect.com/science/article/pii/S0169136814001954
|
Norton, D., Knight, J. E., 1977. Transport Phenomena in Hydrothermal Systems; Cooling Plutons. American Journal of Science, 277(8):937-981. https://doi.org/10.2475/ajs.277.8.937
|
Ren, Q.J., Guo, G.Z., Feng, Z.J., et al., 1994. Computer Simulation of Heat and Fluid Transport in the Ore-Forming Process of the Jinduicheng Porphyry Molybdenum Deposit, Shaanxi Province. Mineral Deposits, 13(1):88-959 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ401.008.htm
|
Schön, J.H., 2015. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics. Elsevier, Amsterdam, 378-380. https://doi.org/ 10.1016/c2014-0-03002-x
|
Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1):3-41. https://doi.org/10.2113/gsecongeo.105.1.3
|
Spencer, E. T., Wilkinson, J. J., Creaser, R. A., et al., 2015. The Distribution and Timing of Molybdenite Mineralization at the El Teniente Cu-Mo Porphyry Deposit, Chile. Economic Geology, 110(2):387-421. https://doi.org/10.2113/econgeo.110.2.387
|
Vosteen, H. D., Schellschmidt, R., 2003. Influence of Temperature on Thermal Conductivity, Thermal Capacity and Thermal Diffusivity for Different Types of Rock. Physics and Chemistry of the Earth, Parts A/B/C, 28(9/10/11):499-509. https://doi.org/10.1016/s1474-7065(03)00069-x
|
Wagner, W., Pruss, A., 2002. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Journal of Physical and Chemical Reference Data, 31(2):387-535. https://doi.org/10.1063/1.1461829
|
Wang, D.L., Shen, J.F., Qiu, H.C., et al., 2019. Study on Typomorphic Characteristics of Pyrite and Prediction of Deep Prospecting of Wulong Gold Deposit in Liaoning Province. Journal of Nanjing University (Natural Science), 55(6):898-915 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-NJDZ201906003.htm
|
Wang, D. Y., 2013. Magma Heat NS1D:One-Dimensional Visualization Numerical Simulator for Computing Thermal Evolution in a Contact Metamorphic Aureole. Computers & Geosciences, 54:21-27. https://doi.org/10.1016/j.cageo.2013.01.006
|
Wang, K.Y., Qing, M., Bian, H.Y., et al., 2010. The Geological Features and Geochemistry of Ore-Forming Fluids of Wulong Gold Deposit in Liaoning Province. Journal of Jilin University (Earth Science Edition), 40(3):557-564 (in Chinese with English abstract).
|
Wang, Y. Z., Wang, F., Wu, L., et al., 2018. (U-Th)/He Thermochronology of Metallic Ore Deposits in the Liaodong Peninsula:Implications for Orefield Evolution in Northeast China. Ore Geology Reviews, 92:348-365. https://doi.org/10.1016/j.oregeorev.2017.11.025
|
Wei, J.H., Liu, C.Q., Tang, H.F., 2003. Metallogeny of Gold Deposits and Evidence of Isotopes and Trace Elements for the Comagmatic Evolution of the Yanshanian Intrusive Rocks in the Wulong Area, Eastern Liaoning. Geological Review, 49(3):265-271 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200303007.htm
|
Wei, J.H., Liu, C.Q., Zhao, Y.X., et al., 2001. Time Span of the Major Ore-Forming Stages of the Wulong Gold Deposit, Liaoning. Geological Review, 47(4):433-437 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200104020.htm
|
Weis, P., Driesner, T., Heinrich, C. A., 2012. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts within Dynamic Fluid Plumes. Science, 338(6114):1613-1616. https://doi.org/10.1126/science.1225009
|
Wu, F., Lin, J., Wilde, S., et al., 2005a. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1/2):103-119. https://doi.org/10.1016/j.epsl.2005.02.019
|
Wu, F. Y., Yang, J. H., Wilde, S. A., et al., 2005b. Geochronology, Petrogenesis and Tectonic Implications of Jurassic Granites in the Liaodong Peninsula, NE China. Chemical Geology, 221(1/2):127-156. https://doi.org/10.1016/j.chemgeo.2005.04.010
|
Xiao, C.H., Liu, X.C., Zhao, Y., et al., 2020. Structural Controls and Re-Os Dating of Molybdenite of the Wulong Gold Deposit, NE China. Earth Science, 45(11):3982-3997 (in Chinese with English abstract).
|
Xiao, S.Y., Zhu, G., Zhang, S., et al., 2018. Structural Processes and Dike Emplacement Mechanism in the Wulong Gold Field, Eastern Liaoning. Chinese Science Bulletin, 63(28):3022-3036 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-KXTB2018Z2011.htm
|
Xing, H. L., 2014. Finite Element Simulation of Transient Geothermal Flow in Extremely Heterogeneous Fractured Porous Media. Journal of Geochemical Exploration, 144:168-178. https://doi.org/10.1016/j.gexplo.2014.03.002
|
Yang, C.F., 1997. The Characteristics of the Ore Bearing Fracture Tectonics and the Gold Orebody's Spatial Occurrence of Wulong Gold Deposit. Gold, 18(3):3-8 (in Chinese with English abstract).
|
Yang, F.C., Song, Y.H., Yang, J.L., et al., 2018. SHRIMP U-Pb Age and Geochemical Characteristics of Granites in Wulong-Sidaogou Gold Deposit, East Liaoning. Geotectonica et Metallogenia, 42(5):940-954 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK201805013.htm
|
Yang, F.C., Yang, J.L., Gu, Y.C., et al., 2019. Emplacement and Deformation Age of Surrounding Gneissic Granite in Wulong Gold Deposit, Eastern Liaoning Province:SHRIMP U-Pb Age. Journal of Geomechanics, 25(Suppl.1):44-48 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX2019S1008.htm
|
Yang, J., Large, R. R., Bull, S., et al., 2006. Basin-Scale Numerical Modeling to Test the Role of Buoyancy-Driven Fluid Flow and Heat Transfer in the Formation of Stratiform Zn-Pb-Ag Deposits in the Northern Mount Isa Basin. Economic Geology, 101(6):1275-1292. https://doi.org/10.2113/gsecongeo.101.6.1275
|
Yang, J.H., Wu, F.Y., Luo, Q.H., et al., 2004. Deformation Age of Jurassic Granites in the Dandong Area, Eastern China:40Ar/39Ar Geochronological Constraints. Acta Petrologica Sinica, 20(5):1205-1214 (in Chinese with English abstract). http://www.oalib.com/paper/1472346
|
Yang, R.Y., Ma, D.S., Pan, J.Y., 2005. Effect of Annual Precipitation to Geotherm of Ore-Forming Fluid:A Case of Antimony Deposits in Xikuangshan. Earth Science, 30(3):366-370 (in Chinese with English abstract). http://www.researchgate.net/publication/289039033_Effect_of_annual_precipitation_to_geotherm_of_ore-forming_fluid_A_case_of_antimony_deposits_in_Xikuangshan
|
Yang, S.S., Wang, K.Y., Hao, T.S., et al., 2010. Characteristics of Fluid Inclusions and Genesis of Sidaogou Gold Deposit in Dandong Area, Liaoning Province. Journal of Jilin University (Earth Science Edition), 40(4):773-780 (in Chinese with English abstract). http://www.researchgate.net/publication/290308650_Characteristics_of_fluid_inclusions_and_genesis_of_Sidaogou_gold_deposit_in_Dandong_Area_Liaoning_Province?ev=auth_pub
|
Yu, B., Zeng, Q. D., Frimmel, H. E., et al., 2018. Genesis of the Wulong Gold Deposit, Northeastern North China Craton:Constraints from Fluid Inclusions, H-O-S-Pb Isotopes, and Pyrite Trace Element Concentrations. Ore Geology Reviews, 102:313-337. https://doi.org/10.1016/j.oregeorev.2018.09.016
|
Yu, C.W., Cen, K., Bao, Z. Y., et al., 1997. Dynamics of Ore-Forming Processes. Geological Publishing House, Beijing, 224 (in Chinese).
|
Zeng, Q.D., Chen, R.Y., Yang, J.H., et al., 2019. The Metallogenic Characteristics and Exploring Ore Potential of the Gold Deposits in Eastern Liaoning Province. Acta Petrologica Sinica, 35(7):1939-1963 (in Chinese with English Abstract). doi: 10.18654/1000-0569/2019.07.01
|
Zhang, D.H., Jin, X.D., Mao, S.D., et al., 2011. The Classification of Ore-Forming Fluid and the Efficiency of Ore Formation of Magmatic Hydrothermal Solution. Earth Science Frontiers, 18(5):90-102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201105009.htm
|
Zhang, D.H., Yu, C.W., Bao, Z.Y., et al., 1998. Fluid Dynamics and Numerical Simulation of Ore Zoning of Yinshan Polymetallic Deposit in Dexing, Jiangxi Province. Earth Science, 23(3):267-271 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX803.010.htm
|
Zhang, P., Kou, L. L., Zhao, Y., et al., 2020. Genesis of the Wulong Gold Deposit, Liaoning Province, NE China:Constrains from Noble Gases, Radiogenic and Stable Isotope Studies. Geoscience Frontiers, 11(2):547-563. https://doi.org/10.1016/j.gsf.2019.05.012
|
Zhang, Q., Jin, W.J., Li, C.D., et al., 2014. Magma-Thermal Field:Its Basic Characteristics, and Differences with Geothermal Field. Acta Petrologica Sinica, 30(2):341-349 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201402003.htm
|
Zhang, Q., Jin, W.J., Wang, J.R., et al., 2016. Relationship between Magma-Thermal Field and Hydrocarbon Accumulation. Progress in Geophysics, 31(4): 1525-1541 (in Chinese with English abstract). doi: 10.1016/j.oregeorev.2019.103138
|
Zhang, Z. Q., Wang, G. W., Carranza, E. J. M., et al., 2019. Metallogenic Model of the Wulong Gold District, China, and Associated Assessment of Exploration Criteria Based on Multi-Scale Geoscience Datasets. Ore Geology Reviews, 114:103138. https://doi.org/10.1016/j.oregeorev.2019.103138
|
Zhao, C., Hobbs, B.E., Ord, A., 2008. Convective and Advective Heat Transfer in Geological Systems. Springer, Berlin, 229.
|
Zhao, C. B., Reid, L. B., Regenauer-Lieb, K., 2012. Some Fundamental Issues in Computational Hydrodynamics of Mineralization:A Review. Journal of Geochemical Exploration, 112:21-34. https://doi.org/10.1016/j.gexplo.2011.10.005
|
Zhu, R.X., Fan, H.R., Li, J.W., et al., 2015. Decratonic Gold Deposits. Scientia Sinica (Terrae), 45(8):1153-1168 (in Chinese). doi: 10.1360/zd2015-45-8-1153
|
鲍征宇, 1992.垂直裂隙中热驱动流体对流的发生和稳定性及其热液成矿作用意义.地球科学, 17(S1):57-67. http://www.cnki.com.cn/Article/CJFDTotal-DQKX1992S1009.htm
|
岑况, 田兆雪, 2012.岩浆中心成矿系:岩浆岩体和矿床组合的空间分带理想模式.现代地质, 26(5):1051-1057. http://d.wanfangdata.com.cn/Periodical/xddz201205026
|
崔彬, 李忠, 1998.物质场-能量场-空间场综合成矿预测.现代地质, 12(4):501-505.
|
顾玉超, 2019.辽东五龙金矿区中生代构造-岩浆作用对金成矿制约(博士学位论文).北京: 中国地质大学, 156.
|
胡国辉, 张琪琪, 李建锋, 等, 2020.辽东地区中生代花岗岩的侵位时代:锆石和独居石U-Pb年代学.地球科学, 45(11):3962-3981. doi: 10.3799/dqkx.2020.293
|
李三忠, 刘建忠, 赵国春, 等, 2004.华北克拉通东部地块中生代变形的关键时限及其对构造的制约:以胶辽地区为例.岩石学报, 20(3):633-646. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200403027.htm
|
刘义德, 1987.辽宁省三股流花岗岩地质特征及成因探讨.辽宁地质, 3:245-260. http://www.cnki.com.cn/Article/CJFDTotal-LOAD198703005.htm
|
吕贻峰, 李江风, 张鸣, 1993.强力侵位花岗岩体与金矿的关系:以丹东三股流岩体为例.国土资源, 1(2):120-128.
|
马昌前, 李艳青, 2017.花岗岩体的累积生长与高结晶度岩浆的分异.岩石学报, 33(5):1479-1488. http://d.wanfangdata.com.cn/Periodical/ysxb98201705007
|
马野牧, 陆现彩, 张雪芬, 等, 2013.花岗岩侵入体-泥质围岩热传输过程的数值模拟及其地质意义:以粤东典型接触带剖面为例.高校地质学报, 19(2):307-315. http://www.cnki.com.cn/Article/CJFDTotal-GXDX201302013.htm
|
任启江, 郭国章, 冯祖钧, 等, 1994.陕西金堆城斑岩钼矿成矿过程中热及流体传输的计算模拟.矿床地质, 13(1):88-95. http://www.cqvip.com/Main/Detail.aspx?id=1418808
|
王冬丽, 申俊峰, 邱海成, 等, 2019.辽宁五龙金矿黄铁矿标型特征研究及深部找矿预测.南京大学学报(自然科学版), 55(6):898-915. http://www.cqvip.com/QK/95251X/20196/7100287129.html
|
王可勇, 卿敏, 边红业, 等, 2010.辽宁五龙金矿床地质特征及成矿流体地球化学性质.吉林大学学报(地球科学版), 40(3):557-564. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201003012.htm
|
魏俊浩, 刘丛强, 唐红峰, 2003.辽东五龙地区燕山期侵入岩类同源岩浆演化微量元素、同位素证据与金矿成矿.地质论评, 49(3):265-271. http://www.cnki.com.cn/Article/CJFDTotal-DZLP200303007.htm
|
魏俊浩, 刘丛强, 赵永鑫, 等, 2001.辽宁五龙金矿主成矿阶段成矿持续时限.地质论评, 47(4):433-437.
|
肖昌浩, 刘向冲, 赵岩, 等, 2020.辽东五龙金矿床构造控矿特征和辉钼矿Re-Os年龄, 地球科学, 45(11):3982-3997. doi: 10.3799/dqkx.2020.217
|
肖世椰, 朱光, 张帅, 等, 2018.辽东五龙金矿区成矿期构造过程与岩脉就位机制.科学通报, 63(28):3022-3036. http://www.cqvip.com/QK/94252X/201828/676541281.html
|
杨春福, 1997.辽宁五龙金矿容矿断裂构造与金矿体空间赋存特征.黄金, 18(3):3-8. http://www.cqvip.com/Main/Detail.aspx?id=2452073
|
杨凤超, 宋运红, 杨佳林, 等, 2018.辽东五龙-四道沟金矿集区花岗杂岩SHRIMP U-Pb年龄、地球化学特征及地质意义.大地构造与成矿学, 42(5):940-954. http://d.old.wanfangdata.com.cn/Periodical_ddgzyckx201805013.aspx
|
杨凤超, 杨佳林, 顾玉超, 等, 2019.辽东五龙金矿围岩片麻状花岗岩的侵位和变形时代:SHRIMP U-Pb年代学制约.地质力学学报, 25(S1):44-48. http://www.cqvip.com/QK/98414X/2019A01/68907688504849578349484856.html
|
杨进辉, 吴福元, 罗清华, 等, 2004.辽宁丹东地区侏罗纪花岗岩的变形时代:40Ar/39Ar年代学制约.岩石学报, 20(5):1205-1214. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200412002043.htm
|
杨瑞琰, 马东升, 潘家永, 2005.大气降水量对成矿流体热场的影响:以锡矿山锑矿床成矿流体为例.地球科学, 30(3):366-370. http://www.earth-science.net/article/id/1419
|
杨帅师, 王可勇, 郝通顺, 等, 2010.辽宁丹东四道沟金矿床流体包裹体特征及矿床成因.吉林大学学报(地球科学版), 40(4):773-780.
|
於崇文, 岑况, 鲍征宇, 等, 1998.成矿作用动力学.北京:地质出版社, 224.
|
曾庆栋, 陈仁义, 杨进辉, 等, 2019.辽东地区金矿床类型、成矿特征及找矿潜力.岩石学报, 35(7):1939-1963. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201907001.htm
|
张德会, 金旭东, 毛世德, 等, 2011.成矿热液分类兼论岩浆热液的成矿效率.地学前缘, 18(5):90-102.
|
张德会, 於崇文, 鲍征宇, 等, 1998.银山多金属矿床成矿分带的流体动力学计算模拟.地球科学, 23(3):267-271. http://www.earth-science.net/article/id/648
|
张旗, 金惟俊, 李承东, 等, 2014.岩浆热场:它的基本特征及其与地热场的区别.岩石学报, 30(2):341-349. http://d.wanfangdata.com.cn/Periodical/ysxb98201402003
|
张旗, 金维浚, 王金荣, 等, 2016.岩浆热场对油气成藏的影响.地球物理学进展, 31(4):1525-1541.
|
朱日祥, 范宏瑞, 李建威, 等, 2015.克拉通破坏型金矿床.中国科学(D辑:地球科学), 45(8):1153-1168. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201508006
|