• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 8
    Aug.  2021
    Turn off MathJax
    Article Contents
    Tian Enyuan, Gong Daxing, Lai Yang, Qiu Xiaolong, Xie Hua, Tian Kangzhi, 2021. Genesis and Enrichment of Sedimentary Rare Earth in Weining Area, Guizhou Province. Earth Science, 46(8): 2711-2731. doi: 10.3799/dqkx.2020.301
    Citation: Tian Enyuan, Gong Daxing, Lai Yang, Qiu Xiaolong, Xie Hua, Tian Kangzhi, 2021. Genesis and Enrichment of Sedimentary Rare Earth in Weining Area, Guizhou Province. Earth Science, 46(8): 2711-2731. doi: 10.3799/dqkx.2020.301

    Genesis and Enrichment of Sedimentary Rare Earth in Weining Area, Guizhou Province

    doi: 10.3799/dqkx.2020.301
    • Received Date: 2020-06-30
      Available Online: 2021-09-14
    • Publish Date: 2021-08-15
    • The genetic types of the rare earth ore-bearing rocks at the bottom of Xuanwei Formation in Weining area,Guizhou Province are controversial. In order to clarify the genetic mechanism and concentration regularity,through field investigation combined with mineralogy,lithofacies paleogeographic features and geochemistry,systematic research has been carried out. The results show that the rare earth ore-bearing rocks at the bottom of the Xuanwei Formation of Permian are widely distributed with good continuity and the thickness of ore-bearing sections varies from 2 to 16 m,and associated with niobium,zirconium,gallium and other elements. The average grade of rare earth oxide element is 0.15%,and the highest grade is up to 1.6%. The analyses of major,trace and rare earth elements shows that the rare earth ore-bearing rocks in Weining area contain typical minerals from basalt and volcanic ash,the rare earth element distribution patterns are inherited from basalt. The chemical weathering in the study area is stronger,and the higher maturity of the ingredients means that it has been transformed after being transported for a long distance. The Emeishan basalt provides the main material source for the rare earth layer. The rare earth layer is controlled by the composition of the source rock,has undergone sedimentary separation and recycling,and has suffered from the mixing of intermediate-acid magmatic material source region from the upper crust.The genetic mechanism is suggested as that the basalt was weathered and denuded in the hot,humid and strongly weathered environment during the Late Permian,after weathering and denudation,the basalt was transported to the flood plain microfacies in the delta plain subfacies between the volcanic depressions,and deposited with the volcanic ash. Under weathering and leaching,the rare earth elements were resolved as ions,and then they were adsorbed on the surface of clay minerals such as kaolinite with strong adsorption ability,or entered into the crystal lattice to form the rare-earth rich layer.

       

    • loading
    • Allègre, C. J., Minster, J. F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1): 1-25. https://doi.org/10.1016/0012-821x(78)90123-1
      Asiedu, D. K., Dampare, S. B., Sakyi, P. A., et al., 2004. Geochemistry of Paleoproterozoic Metasedimentary Rocks from the Birim Diamondiferous Field, Southern Ghana: Implications for Provenance and Crustal Evolution at the Archean-Proterozoic Boundary. Geochemical Journal, 38(3): 215-228. https://doi.org/10.2343/geochemj.38.215
      Chung, S. L., Jahn, B. M., 1995. Plume-Lithosphere Interaction in Generation of the Emeishan Flood Basalts at the Permian-Triassic Boundary. Geology, 23(10): 889-892. https://doi.org/10.1130/0091-7613(1995)0230889:pliigo>2.3.co;2 doi: 10.1130/0091-7613(1995)0230889:pliigo>2.3.co;2
      Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9
      Dai, W., Xu, Y.J., Du, Y.S., et al., 2017. Geochemistry and Its Tectonic Significance of the Clastic Rock in the Neoproterozoic Xiajiang Group, Southeast Guizhou, South China. Geological Review, 63(5): 1153-1168 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201705004.htm
      Guo, Y. T., 1990. Late Permian Paleoclimate of Western Guizhou. Coal Geology of China, 2(3): 18-20 (in Chinese).
      He, B., Xu, Y. G., Chung, S. L., et al., 2003. Sedimentary Evidence for a Rapid, Kilometer-Scale Crustal Doming Prior to the Eruption of the Emeishan Flood Basalts. Earth and Planetary Science Letters, 213(3-4): 391-405. https://doi.org/10.1016/s0012-821x(03)00323-6
      He, B., Xu, Y. G., Huang, X. L., et al., 2007. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U-Pb Dating of Silicic Ignimbrites, Post-Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3-4): 306-323. https://doi.org/10.1016/j.epsl.2006.12.021
      He, B., Xu, Y. G., Wang, Y. M., et al., 2006. Sedimentation and Lithofacies Paleogeography in Southwestern China before and after the Emeishan Flood Volcanism: New Insights into Surface Response to Mantle Plume Activity. The Journal of Geology, 114(1): 117-132. https://doi.org/10.1086/498103
      Ji, G.Y., Zhang, H.P., Li, Q.L., et al., 2018. Current Status of Rare Earth Resources in China and Strategies for Its Sustainable Development. China Mining Magazine, 27(8): 9-16 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_china-mining-magazine_thesis/0201216501894.html
      Li, F.L., Qu, X.Y., Liu, L., et al., 2009. Sedimentary Environment on Upper Permian Linxi Group in Inner Mongolia. Acta Sedimentologica Sinica, 27(2): 265-272 (in Chinese with English abstract). http://www.researchgate.net/publication/285809057_Sedimentary_environment_on_Upper_Permian_Linxi_Group_in_Inner_Mongolia
      Liu, Y. J., Cao, L. M., Li, Z. L., et al., 1984. Elemental Geochemistry. Science Press, Beijing (in Chinese).
      Liu, Y.P., Cheng, G.F., Liu, K., et al., 2017. Ore-Forming Role and Its Model of a Sedimentary (Accumulation) Type of Iron Deposits from Basalt-Paleo-Weathering Crust in Western Guizhou. Geological Science and Technology Information, 36(4): 107-112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201704013.htm
      Li, Y.J., Zhang, Z.W., Zhou, L.J., et al., 2013. Geochemical Feature and Genesis of the Kulijing Bauxite Deposit, Guizhou Province, China. Bulletin of Mineralogy, Petrology and Geochemistry, 32(5): 558-566 (in Chinese with English abstract). http://www.researchgate.net/publication/318787805_Geochemical_feature_and_genesis_of_the_Kulijing_bauxite_deposit_Guizhou_Province_China
      McLennan, S. M., 1993. Weathering and Global Denudation. The Journal of Geology, 101(2): 295-303. https://doi.org/10.1086/648222
      McLennan, S. M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Processes Controlling the Composition of Clastic Sediments. Geological Society of America, 21-40. https://doi.org/10.1130/spe284-p21
      Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
      Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
      Patino, L. C., Velbel, M. A., Price, J. R., et al., 2003. Trace Element Mobility during Spheroidal Weathering of Basalts and Andesites in Hawaii and Guatemala. Chemical Geology, 202(3-4): 343-364. https://doi.org/10.1016/j.chemgeo.2003.01.002
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Roser, B. P., Korsch, R. J., 1988. Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology, 67(1-2): 119-139. https://doi.org/10.1016/0009-2541(88)90010-1
      Ryan, C., 2019. Rare Earth Elements: Market Issues and Outlook. Adamas Intelligence, Amsterdam.
      Shao, L.Y., Gao, C. X., Zhang, C., et al., 2013. Sequence-Palaeogeography and Coal Accumulation of Late Permian in Southwestern China. Acta Sedimentologica Sinica, 31(5): 856-866 (in Chinese with English abstract). http://www.cqvip.com/QK/95994X/201305/47368757.html
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tian, J.C., Zeng, Y.F., 1995. The Revolution of the Isotopic Composition of Strontium in the Permian Paleo-Ocean in South China. Acta Sedimentologica Sinica, 13(4): 125-130 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB504.013.htm
      Viers, J., Dupré, B., Polvé, M., et al., 1997. Chemical Weathering in the Drainage Basin of a Tropical Watershed (Nsimi-Zoetele Site, Cameroon): Comparison between Organic-Poor and Organic-Rich Waters. Chemical Geology, 140(3-4): 181-206. https://doi.org/10.1016/s0009-2541(97)00048-x
      Wan, F. D., Zhu, X. Q., Han, T., et al., 2010. Modeling Experimental Study on Weathering-Leaching of Emeishan Basalt and Its Relation with Metallogenesis. Chinese Journal of Geochemistry, 29(2): 212-216. https://doi.org/10.1007/s11631-010-0212
      Wang, D.H., Wang, R.J., Li, J.K., et al., 2013. The Progress in the Strategic Research and Survey of Rare Earth, Rare Metal and Rare-Scattered Elements Mineral Resources. Geology in China, 40(2): 361-370 (in Chinese with English abstract). http://www.researchgate.net/publication/287900257_The_progress_in_the_strategic_research_and_survey_of_rare_earth_rare_metal_and_rare-scattered_elements_mineral_resources
      Wang, Q.Y., Mou, C.L., He, J., et al., 2018. Provenance Analysis and Tectonic Setting Judgment in Shanglan Formation of Middle Triassic in Weixi Area. Earth Science, 43(8): 2811-2832 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808021.htm
      Wang, W., Yang, R.D., Bao, M., et al., 2006. Discussion on the Mineralization Associated with the Weathering Crust on E'meishan Basalt in Guizhou Province, China. Journal of Guizhou University (Natural Science Edition), 23(4): 366-370 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDI200604009.htm
      Wang, X. T., Shao, L. Y., Eriksson, K. A., et al., 2020. Evolution of a Plume-Influenced Source-to-Sink System: An Example from the Coupled Central Emeishan Large Igneous Province and Adjacent Western Yangtze Cratonic Basin in the Late Permian, SW China. Earth-Science Reviews, 207: 103224. https://doi.org/10.1016/j.earscirev.2020.103224
      Xie, H., Yi, H.S., Zhang, C., et al., 2015. Compilation and Geological Implication of the Quantitative Lithofacies Map of Xialei Manganese Deposit, Guangxi. Metal Mine, (3): 128-132 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_metal-mine_thesis/0201215236510.html
      Xu, X.T., Shao, L.Y., 2018. Limiting Factors in Utilization of Chemical Index of Alteration of Mudstones to Quantify the Degree of Weathering in Provenance. Journal of Palaeogeography (Chinese Edition), 20(3): 515-522 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-palaeogeography-chinese-edition_thesis/0201253364674.html
      Xu, Y., Dai, Z.M., Gong, D.X., et al., 2018. Study on the Occurrence State of Rare Earth Elements of Rare Earth-Enriched Rocks in the Permian Xuanwei Formation in Guizhou Province. Multipurpose Utilization of Mineral Resources, (6): 90-94, 101 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_multipurpose-utilization-mineral-resources_thesis/0201271779196.html
      Xu, Y. G., Chung, S. L., Jahn, B. M., et al., 2001. Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58(3-4): 145-168. https://doi.org/10.1016/s0024-4937(01)00055-x
      Xu, Y. G., Chung, S. L., Shao, H., et al., 2010. Silicic Magmas from the Emeishan Large Igneous Province, Southwest China: Petrogenesis and Their Link with the End-Guadalupian Biological Crisis. Lithos, 119(1-2): 47-60. https://doi.org/10.1016/j.lithos.2010.04.013
      Yang, X. F., He, D. F., Wang, Q. C., et al., 2012. Provenance and Tectonic Setting of the Carboniferous Sedimentary Rocks of the East Junggar Basin, China: Evidence from Geochemistry and U-Pb Zircon Geochronology. Gondwana Research, 22(2): 567-584. https://doi.org/10.1016/j.gr.2011.11.001
      Yuan, Z. X., Li, J. K., Ying, L. J., 2007. REE Mineralization Type Worthy of Attention. Mineral Deposits, 26(5): 581-582 (in Chinese).
      Zeng, L. X., 1989. Discovery of Ion Adsorbed Rare Earth Ore in Western Guizhou. Guizhou Geology, 6(3): 272 (in Chinese).
      Zhang, H., 2014. Geological and Geochemical Characteristics and Metallogenic Mechanism of REE Deposits, Northwestern Guizhou (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Zhang, Z. W., Yang, X. Y., Li, S., et al., 2010. Geochemical Characteristics of the Xuanwei Formation in West Guizhou: Significance of Sedimentary Environment and Mineralization. Chinese Journal of Geochemistry, 29(4): 355-364. https://doi.org/10.1007/s11631-010-0467-1
      Zhao, C.J., Kang, Z.H., Hou, Y.H., et al., 2020. Geochemical Characteristics of Rare Earth Elements and Their Geological Significance of Permian Shales in Lower Yangtze Area. Earth Science, 45(11): 4118-4127 (in Chinese with English abstract).
      Zhao, X.M., Liu, S.D., Zhang, Q.X., et al., 2011. Geochemical Characters of the Nanhua System in Changyang, Western Hubei Province and Its Implication for Climate and Sequence Correlation. Acta Geologica Sinica, 85(4): 576-585 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dizhixb201104013
      Zhou, L.J., 2012. Geological and Geochemical Characteristics of Sedimentary Kaolinite Claystone Rare Earth Deposits in Western Guizhou (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
      戴维, 徐亚军, 杜远生, 等, 2017. 黔东南新元古代下江群碎屑岩地球化学特征及其大地构造意义. 地质论评, 63(5): 1153-1168. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201705004.htm
      郭英廷, 1990. 贵州西部晚二叠世古气候. 中国煤田地质, 2(3): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT199003003.htm
      季根源, 张洪平, 李秋玲, 等, 2018. 中国稀土矿产资源现状及其可持续发展对策. 中国矿业, 27(8): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201808002.htm
      李福来, 曲希玉, 刘立, 等, 2009. 内蒙古东北部上二叠统林西组沉积环境. 沉积学报, 27(2): 265-272. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200902009.htm
      刘英俊, 曹励明, 李兆麟, 等, 1984. 元素地球化学. 北京: 科学出版社.
      刘幼平, 程国繁, 刘坤, 等, 2017. 贵州西部地区"玄武岩-古风化壳沉积(堆积)型"铁矿成矿作用与成矿模式. 地质科技情报, 36(4): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704013.htm
      李玉娇, 张正伟, 周灵洁, 等, 2013. 贵州省苦李井铝土矿地球化学特征及成因探讨. 矿物岩石地球化学通报, 32(5): 558-566. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201305005.htm
      邵龙义, 高彩霞, 张超, 等, 2013. 西南地区晚二叠世层序——古地理及聚煤特征. 沉积学报, 31(5): 856-866. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201305011.htm
      田景春, 曾允孚, 1995. 中国南方二叠纪古海洋锶同位素演化. 沉积学报, 13(4): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB504.013.htm
      王登红, 王瑞江, 李建康, 等, 2013. 中国三稀矿产资源战略调查研究进展综述. 中国地质, 40(2): 361-370. doi: 10.3969/j.issn.1000-3657.2013.02.001
      王启宇, 牟传龙, 贺娟, 等, 2018. 维西地区中三叠统上兰组物源分析及构造背景判断. 地球科学, 43(8): 2811-2832. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201808021.htm
      王伟, 杨瑞东, 鲍淼, 等, 2006. 贵州峨眉山玄武岩区风化壳与成矿关系. 贵州大学学报(自然科学版), 23(4): 366-370. doi: 10.3969/j.issn.1000-5269.2006.04.010
      谢华, 伊海生, 张超, 等, 2015. 广西下雷锰矿区定量岩相图编制及其意义. 金属矿山, (3): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201503031.htm
      徐小涛, 邵龙义, 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报, 20(3): 515-522. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201803014.htm
      徐莺, 戴宗明, 龚大兴, 等, 2018. 贵州某地二叠系宣威组富稀土岩系稀土元素赋存状态研究. 矿产综合利用, (6): 90-94, 101. doi: 10.3969/j.issn.1000-6532.2018.06.018
      袁忠信, 李建康, 应立娟, 2007. 一个值得注意的REE矿化类型. 矿床地质, 26(5): 581-582. doi: 10.3969/j.issn.0258-7106.2007.05.011
      曾励训, 1989. 贵州西部发现离子吸附型稀土矿. 贵州地质, 6(3): 272. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ198903010.htm
      张海, 2014. 黔西北地区稀土矿床地质地球化学特征及其成矿机制研究(博士学位论文). 成都: 成都理工大学.
      赵晨君, 康志宏, 侯阳红, 等, 2020. 下扬子二叠系泥页岩稀土元素地球化学特征及地质意义. 地球科学, 45(11): 4118-4127. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202011016.htm
      赵小明, 刘圣德, 张权绪, 等, 2011. 鄂西长阳南华系地球化学特征的气候指示意义及地层对比. 地质学报, 85(4): 576-585. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201104014.htm
      周灵洁, 2012. 贵州西部沉积型高岭石质粘土岩稀土矿床的地质和地球化学特征(硕士学位论文). 北京: 中国科学院大学.
    • dqkxzx-46-8-2711-附表.doc
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(1)

      Article views (2025) PDF downloads(141) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return