• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 8
    Aug.  2021
    Turn off MathJax
    Article Contents
    Liu Xueping, Lu Shuangfang, Tang Mingming, Sun Dongquan, Tang Jiafan, Zhang Kexin, He Taohua, Qi Ning, Lu Mingyue, 2021. Numerical Simulation of Sedimentary Dynamics to Estuarine Bar under the Coupled Fluvial-Tidal Control. Earth Science, 46(8): 2944-2957. doi: 10.3799/dqkx.2020.305
    Citation: Liu Xueping, Lu Shuangfang, Tang Mingming, Sun Dongquan, Tang Jiafan, Zhang Kexin, He Taohua, Qi Ning, Lu Mingyue, 2021. Numerical Simulation of Sedimentary Dynamics to Estuarine Bar under the Coupled Fluvial-Tidal Control. Earth Science, 46(8): 2944-2957. doi: 10.3799/dqkx.2020.305

    Numerical Simulation of Sedimentary Dynamics to Estuarine Bar under the Coupled Fluvial-Tidal Control

    doi: 10.3799/dqkx.2020.305
    • Received Date: 2020-08-01
      Available Online: 2021-09-14
    • Publish Date: 2021-08-15
    • The complex sedimentary characteristics and internal structure of the tidal-controlled estuary dam are still unclear. By means of establishment of an ideal tidal-controlled estuary model, using sedimentary dynamics numerical simulation method, quantitative simulation of sedimentation of tidal-controlled estuary dam and internal interlayer was carried out under different flow and tidal energy conditions. The results show that under ideal conditions, large tidal range and medium flow are conducive to large-scale development of tidal-controlled estuary bars. In the analysis of tidal energy factors, the length-to-width ratio of the tidal-controlled estuary dam is 2-15, the length of the interlayer is concentrated at 8 km, and the thickness of the interlayer is 0.1-0.2 m. In the analysis of flow factors, the length-to-width ratio of the tidal-controlled estuary dam body is 1.5-9.0, the interlayer length is 1-2 km, and the interlayer thickness is 0.1-0.2 m. Simulation results show that the coupled action of the river and tide control the formation and distribution of the bar, but the effect of the tide is more remarkable. Numerical simulation of the sedimentary process of tidal-controlled estuaries based on sedimentary dynamics has been verified by well seismic data, which will provide new ideas for the sedimentary evolution of tidal-controlled estuaries and will guide the exploration and development of oil-bearing reservoirs in the tidal-controlled estuary.

       

    • loading
    • Akhtar, M. P., Sharma, N., Ojha, C. S. P., et al., 2011. Braiding Process and Bank Erosion in the Brahmaputra River. International Journal of Sediment Research, 26(4): 431-444. https://doi.org/10.1016/s1001-6279(12)60003-1
      Braat, L., van Kessel, T., Leuven, J. R. F. W., et al., 2017. Effects of Mud Supply on Large-Scale Estuary Morphology and Development over Centuries to Millennia. Earth Surface Dynamics, 5(4): 617-652. https://doi.org/10.5194/esurf-5-617-2017
      Carballo, R., Iglesias, G., Castro, A., 2009. Numerical Model Evaluation of Tidal Stream Energy Resources in the Ría de Muros (NW Spain). Renewable Energy, 34(6): 1517-1524. https://doi.org/10.1016/j.renene.2008.10.028
      Dalman, R., Weltje, G. J., Karamitopoulos, P., 2015. High-Resolution Sequence Stratigraphy of Fluvio-Deltaic Systems: Prospects of System-Wide Chronostratigraphic Correlation. Earth and Planetary Science Letters, 412: 10-17. https://doi.org/10.1016/j.epsl.2014.12.030
      Dalrymple, R. W., Choi, K., 2007. Morphologic and Facies Trends through the Fluvial-Marine Transition in Tide-Dominated Depositional Systems: A Schematic Framework for Environmental and Sequence-Stratigraphic Interpretation. Earth-Science Reviews, 81(3-4): 135-174. https://doi.org/10.1016/j.earscirev.2006.10.002
      de Jalón, D.G., Martínez-Fernández, V., Fazelpoor, K., et al., 2020. Vegetation Encroachment Ratios in Regulated and Non-Regulated Mediterranean Rivers (Spain): An Exploratory Overview. Journal of Hydro-Environment Research, 30: 35-44. https://doi.org/10.1016/j.jher.2019.11.006
      de Paula Faria, D.L., dos Reis, A.T., de Souza Jr, O.G., 2017. Three-Dimensional Stratigraphic-Sedimentological Forward Modeling of an Aptian Carbonate Reservoir Deposited during the Sag Stage in the Santos Basin, Brazil. Marine and Petroleum Geology, 88: 676-695. https://doi.org/10.1016/j.marpetgeo.2017.09.013
      dos Santos, V. H. M., da Silva Dias, F. J., Torres, A. R., et al., 2020. Hydrodynamics and Suspended Particulate Matter Retention in Macrotidal Estuaries Located in Amazonia-Semiarid Interface (Northeastern-Brazil). International Journal of Sediment Research, 35(4): 417-429. https://doi.org/10.1016/j.ijsrc.2020.03.004
      Fan, D. D., Tu, J. B., Shang, S., et al., 2014. Characteristics of Tidal-Bore Deposits and Facies Associations in the Qiantang Estuary, China. Marine Geology, 348: 1-14. https://doi.org/10.1016/j.margeo.2013.11.012
      Fu, X., Du, X. F., Guan, D. Y., 2020. Depositional System, Plane Distribution and Exploration Significance of Fan-Delta Mixed Siliciclastic-Carbonate Sediment in a Lacustrine Basin: An Example of Member 1-2 of Shahejie Formation in the Offshore of the Bohai Bay, Eastern China. Earth Science, 45(10): 3706-3720 (in Chinese with English abstract).
      Geleynse, N., Storms, J. E. A., Walstra, D. J. R., et al., 2011. Controls on River Delta Formation; Insights from Numerical Modelling. Earth and Planetary Science Letters, 302(1-2): 217-226. https://doi.org/10.1016/j.epsl.2010.12.013
      Guézennec, L., Lafite, R., Dupont, J. P., et al., 1999. Hydrodynamics of Suspended Particulate Matter in the Tidal Freshwater Zone of a Macrotidal Estuary (the Seine Estuary, France). Estuaries, 22(3): 717-727. https://doi.org/10.2307/1353058
      Jiménez Robles, A. M., Ortega-Sánchez, M., 2018. Implications of River Discharge Angle and Basin Slope on Mouth Bar Morphology and Discharge Dynamics of Stable Jets. Journal of Hydraulic Engineering, 144(9): 04018061. https://doi.org/10.1061/(asce)hy.1943-7900.0001506
      Kilaru, S., Goud, B. K., Rao, V. K., 2013. Crustal Structure of the Western Indian Shield: Model Based on Regional Gravity and Magnetic Data. Geoscience Frontiers, 4(6): 717-728. https://doi.org/10.1016/j.gsf.2013.02.006
      Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M., et al., 2004. Development and Validation of a Three-Dimensional Morphological Model. Coastal Engineering, 51(8-9): 883-915. https://doi.org/10.1016/j.coastaleng.2004.07.014
      Leuven, J. R. F. W., Braat, L., van Dijk, W. M., et al., 2018. Growing Forced Bars Determine Nonideal Estuary Planform. Journal of Geophysical Research: Earth Surface, 123(11): 2971-2992. https://doi.org/10.1029/2018jf004718
      Leuven, J. R. F. W., Kleinhans, M. G., Weisscher, S. A. H., et al., 2016. Tidal Sand Bar Dimensions and Shapes in Estuaries. Earth-Science Reviews, 161: 204-223. https://doi.org/10.1016/j.earscirev.2016.08.004
      Martinius, A. W., Fustic, M., Garner, D. L., et al., 2017. Reservoir Characterization and Multiscale Heterogeneity Modeling of Inclined Heterolithic Strata for Bitumen-Production Forecasting, McMurray Formation, Corner, Alberta, Canada. Marine and Petroleum Geology, 82: 336-361. https://doi.org/10.1016/j.marpetgeo.2017.02.003
      Nardin, W., Fagherazzi, S., 2012. The Effect of Wind Waves on the Development of River Mouth Bars. Geophysical Research Letters, 39(12): L12607. https://doi.org/10.1029/2012gl051788
      Qian, W. D., Yin, T. J., Hou, G. W., 2019. A New Method for Clastic Reservoir Prediction Based on Numerical Simulation of Diagenesis: A Case Study of Ed1 Sandstones in Bozhong Depression, Bohai Bay Basin, China. Advances in Geo-Energy Research, 3(1): 82-93. https://doi.org/10.26804/ager.2019.01.07
      Schramkowski, G. P., Schuttelaars, H. M., de Swart, H. E., 2002. The Effect of Geometry and Bottom Friction on Local Bed Forms in a Tidal Embayment. Continental Shelf Research, 22(11-13): 1821-1833. https://doi.org/10.1016/s0278-4343(02)00040-7
      Schuurman, F., Marra, W. A., Kleinhans, M. G., 2013. Physics-Based Modeling of Large Braided Sand-Bed Rivers: Bar Pattern Formation, Dynamics, and Sensitivity. Journal of Geophysical Research: Earth Surface, 118(4): 2509-2527. https://doi.org/10.1002/2013jf002896
      Seminara, G., Tubino, M., 2001. Sand Bars in Tidal Channels. Part 1. Free Bars. Journal of Fluid Mechanics, 440: 49-74. https://doi.org/10.1017/s0022112001004748
      Tan, L. S., Ge, Z. M., Fei, B. L., et al., 2020. The Roles of Vegetation, Tide and Sediment in the Variability of Carbon in the Salt Marsh Dominated Tidal Creeks. Estuarine, Coastal and Shelf Science, 239: 106752. https://doi.org/10.1016/j.ecss.2020.106752
      Tang, M. M., Zhang, K. X., Huang, J. X., et al., 2019a. Facies and the Architecture of Estuarine Tidal Bar in the Lower Cretaceous Mcmurray Formation, Central Athabasca Oil Sands, Alberta, Canada. Energies, 12(9): 1769. https://doi.org/10.3390/en12091769
      Tang, M. M., Lu, S. F., Zhang, K. X., et al., 2019b. A Three Dimensional High-Resolution Reservoir Model of Napo Formation in Oriente Basin, Ecuador, Integrating Sediment Dynamic Simulation and Geostatistics. Marine and Petroleum Geology, 110: 240-253. https://doi.org/10.1016/j.marpetgeo.2019.07.022
      Taylor, T. R., Kittridge, M. G., Winefield, P., et al., 2015. Reservoir Quality and Rock Properties Modeling-Triassic and Jurassic Sandstones, Greater Shearwater Area, UK Central North Sea. Marine and Petroleum Geology, 65: 1-21. https://doi.org/10.1016/j.marpetgeo.2015.03.020
      Toffolon, M., Crosato, A., 2007. Developing Macroscale Indicators for Estuarine Morphology: The Case of the Scheldt Estuary. Journal of Coastal Research, 231: 195-212. https://doi.org/10.2112/03-0133.1
      van de Lageweg, W. I., Braat, L., Parsons, D. R., et al., 2018. Controls on Mud Distribution and Architecture along the Fluvial-to-Marine Transition. Geology, 46(11): 971-974. https://doi.org/10.1130/g45504.1
      van de Lageweg, W. I., Feldman, H., 2018. Process-Based Modelling of Morphodynamics and Bar Architecture in Confined Basins with Fluvial and Tidal Currents. Marine Geology, 398: 35-47. https://doi.org/10.1016/j.margeo.2018.01.002
      Winterwerp, J. C., 2011. Fine Sediment Transport by Tidal Asymmetry in the High-Concentrated Ems River: Indications for a Regime Shift in Response to Channel Deepening. Ocean Dynamics, 61(2-3): 203-215. https://doi.org/10.1007/s10236-010-0332-0
      Yang, J.X., Zhang, K.X., Chen, H.P., et al., 2017. Genesis of Mudstone Dikes and Their Impact on Oil Accumulations in D-F Oilfield of Oriente Basin, Ecuador. Oil & Gas Geology, 38(6): 1156-1164 (in Chinese with English abstract). http://www.researchgate.net/publication/324131651_Genesis_of_mudstone_dikes_and_their_impact_on_oil_accumulations_in_D-F_oilfield_of_Oriente_Basin_Ecuador
      Zhan, Q., Wang, Z.H., Zhao, B.C., et al., 2020. Sedimentary Evolution and Coastal Currents Variations of the Yangtze River Mouth(East China Sea) since Last Deglaciation. Earth Science, 45(7): 2697-2708 (in Chinese with English abstract).
      Zhang, X.L., Wu, C.L., Zhou, Q., et al., 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou, China. Earth Science, 45(2): 634-644 (in Chinese with English abstract).
      Zheng, X. Y., Mayerle, R., Wang, Y. B., et al., 2018. Study of the Wind Drag Coefficient during the Storm Xaver in the German Bight Using Data Assimilation. Dynamics of Atmospheres and Oceans, 83: 64-74. https://doi.org/10.1016/j.dynatmoce.2018.06.001
      Zhou, H., Huang, J.X., Feng, W.J., et al., 2020. Analysis on Formation Factors and Development Characteristics of Sand Bar in Tide-Dominated Estuaries: A Case Study Based on Qiantang River. Geological Review, 66(1): 101-112 (in Chinese with English abstract).
      付鑫, 杜晓峰, 官大勇, 等, 2020. 渤海海域沙河街组一二段扇三角洲混合沉积特征、沉积模式及勘探意义. 地球科学, 45(10): 3706-3720. doi: 10.3799/dqkx.2020.173
      杨金秀, 张克鑫, 陈和平, 等, 2017. Oriente盆地D-F油田泥岩墙成因及其对油藏分布的影响. 石油与天然气地质, 38(6): 1156-1164. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201706018.htm
      战庆, 王张华, 赵宝成, 等, 2020. 末次冰消期以来长江口沉积环境演化及沿岸流变化. 地球科学, 45(7): 2697-2708. doi: 10.3799/dqkx.2020.073
      张夏林, 吴冲龙, 周琦, 等, 2020. 贵州超大型锰矿集区的多尺度三维地质建模. 地球科学, 45(2): 634-644. doi: 10.3799/dqkx.2018.384
      周涵, 黄继新, 冯文杰, 等, 2020. 潮控河口湾砂坝发育特征及形成因素分析: 以钱塘江为例. 地质论评, 66(1): 101-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202001008.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(4)

      Article views (1052) PDF downloads(76) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return