Citation: | Jiao Xianwei, Shi Yuruo, Yang Tianshui, Bian Weiwei, Wang Suo, Peng Wenxiao, 2021. U-Pb Age of Detrital Zircons from Lower Cretaceous in Eastern Tethyan Himalaya and Its Paleogeography. Earth Science, 46(8): 2850-2859. doi: 10.3799/dqkx.2020.308 |
Bian, W. W., Yang, T. S., Ma, Y. M., et al., 2019. Paleomagnetic and Geochronological Results from the Zhela and Weimei Formations Lava Flows of the Eastern Tethyan Himalaya: New Insights into the Breakup of Eastern Gondwana. Journal of Geophysical Research: Solid Earth, 124(1): 44-64. https://doi.org/10.1029/2018jb016403
|
Black, L. P., Kamo, S. L., Williams, I. S., et al., 2003. The Application of SHRIMP to Phanerozoic Geochronology: A Critical Appraisal of Four Zircon Standards. Chemical Geology, 200(1-2): 171-188. https://doi.org/10.1016/s0009-2541(03)00166-9
|
Bureau of Geology Mineral Resources of Xizang Autonomous Region, 1993. Regional Geology of Xizang (Tibet) Autonomous Region. Geological Publishing House, Beijing, 160-195 (in Chinese).
|
Cao, H. W., Huang, Y., Li, G. M., et al., 2018. Late Triassic Sedimentary Records in the Northern Tethyan Himalaya: Tectonic Link with Greater India. Geoscience Frontiers, 9(1): 273-291. https://doi.org/10.1016/j.gsf.2017.04.001
|
Dai, J.G., Yin, A., Liu, W.C., et al., 2008. Nd Isotopic Compositions of the Tethyan Himalayan Sequence in Southeastern Tibet. Science China Earth Sciences, 51(9): 1306-1316. https://doi.org/10.1007/s11430-008-0103-7
|
Dickinson, W. R., Gehrels, G. E., 2009. Use of U-Pb Ages of Detrital Zircons to Infer Maximum Depositional Ages of Strata: A Test against a Colorado Plateau Mesozoic Database. Earth and Planetary Science Letters, 288(1-2): 115-125. https://doi.org/10.1016/j.epsl.2009.09.013
|
Ding, F., Gao, J.G., Xu, K.Z., 2020. Geochemistry, Geochronology and Geological Significances of the Basic Dykes in Rongbu Area, Southern Tibet. Acta Petrologica Sinica, 36(2): 391-408 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.02.04
|
Direen, N. G., Cohen, B. E., Maas, R., et al., 2017. Naturaliste Plateau: Constraints on the Timing and Evolution of the Kerguelen Large Igneous Province and Its Role in Gondwana Breakup. Australian Journal of Earth Sciences, 64(7): 851-869. https://doi.org/10.1080/08120099.2017.1367326
|
Fu, J.G., Li, G.M., Wang, G.H., et al., 2018. Timing of E-W Extension Deformation in North Himalaya: Evidences from Ar-Ar Age in the Cuonadong Dome, South Tibet. Earth Science, 43(8): 2638-2650 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808008.htm
|
Gehrels, G., Kapp, P., DeCelles, P., et al., 2011. Detrital Zircon Geochronology of Pre-Tertiary Strata in the Tibetan-Himalayan Orogen. Tectonics, 30(5): TC5016. https://doi.org/10.1029/2011tc002868
|
Hu, X.M., Jansa, L., Chen, L., et al., 2010. Provenance of Lower Cretaceous Wölong Volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the Final Breakup of Eastern Gondwana. Sedimentary Geology, 233(3-4): 193-205. https://doi.org/10.1016/j.sedgeo.2009.11.008
|
Hu, X. M., Jansa, L., Wang, C. S., 2008. Upper Jurassic-Lower Cretaceous Stratigraphy in South-Eastern Tibet: A Comparison with the Western Himalayas. Cretaceous Research, 29(2): 301-315. https://doi.org/10.1016/j.cretres.2007.05.005
|
Hughes, N. C., Myrow, P. M., McKenzie, N. R., et al., 2015. Age and Implications of the Phosphatic Birmania Formation, Rajasthan, India. Precambrian Research, 267: 164-173. https://doi.org/10.1016/j.precamres.2015.06.012
|
Joy, S., Jelsma, H., Tappe, S., et al., 2015. SHRIMP U-Pb Zircon Provenance of the Sullavai Group of Pranhita-Godavari Basin and Bairenkonda Quartzite of Cuddapah Basin, with Implications for the Southern Indian Proterozoic Tectonic Architecture. Journal of Asian Earth Sciences, 111: 827-839. https://doi.org/10.1016/j.jseaes.2015.07.023
|
Lewis, C. J., 2017. SHRIMP U-Pb Detrital Zircon Ages from GSWA Harvey 1, Western Australia: July 2013-June 2015. Geoscience Australia, Canberra. https://doi.org/10.11636/record.2017.020
|
Lewis, C.J., Sircombe, K.N., 2013. Use of U-Pb Geochronology to Delineate Provenance of North West Shelf Sediments, Australia. In: Keep, M., Moss, S.J., eds., The Sedimentary Basins of Western Australia IV: Proceedings of the Petroleum Exploration Society of Australia Symposium. WA, Perth.
|
Li, G.W., 2019. The Provenance Analysis of Late Triassic Sedimentary Sequences in Tethyan Himalaya: The Tectonic Attribute of Materials at the Convergent Margin. Scientia Sinica Terrae, 49(9): 1452-1454 (in Chinese). doi: 10.1360/SSTe-2019-0027
|
Li, S.Z., Yang, Z., Zhao, S.J., et al., 2016. Global Early Paleozoic Orogens (Ⅰ): Collision-Type Orogeny. Journal of Jilin University (Earth Science Edition), 46(4): 945-967 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201604001.htm
|
Liu, Q.S., Wei, Y.S., Zhang, B.S., et al., 2019. Genesis and Tectonic Significance of Quartz Sandstones in the Southern Subzone of Tethyan Himalayas: A Case Study on the Paleocene Jidula Formation in Gamba Area, Southern Tibet. Geoscience, 33(3): 561-573 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ201903009.htm
|
Liu, Y. M., Dai, J. G., Wang, C. S., et al., 2020. Provenance and Tectonic Setting of Upper Triassic Turbidites in the Eastern Tethyan Himalaya: Implications for Early-Stage Evolution of the Neo-Tethys. Earth-Science Reviews, 200: 103030. https://doi.org/10.1016/j.earscirev.2019.103030
|
Ludwig, K.R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
|
Ma, Y.M., Yang, T.S., Bian, W.W., et al., 2016. Early Cretaceous Paleomagnetic and Geochronologic Results from the Tethyan Himalaya: Insights into the Neotethyan Paleogeography and the India-Asia Collision. Scientific Reports, 6: 21605. https://doi.org/10.1038/srep21605
|
McQuarrie, N., Robinson, D., Long, S., et al., 2008. Preliminary Stratigraphic and Structural Architecture of Bhutan: Implications for the along Strike Architecture of the Himalayan System. Earth and Planetary Science Letters, 272(1-2): 105-117. https://doi.org/10.1016/j.epsl.2008.04.030
|
Myrow, P. M., Hughes, N. C., Goodge, J. W., et al., 2010. Extraordinary Transport and Mixing of Sediment across Himalayan Central Gondwana during the Cambrian-Ordovician. Geological Society of America Bulletin, 122(9-10): 1660-1670. https://doi.org/10.1130/b30123.1
|
Olierook, H. K. H., Merle, R. E., Jourdan, F., 2017. Toward a Greater Kerguelen Large Igneous Province: Evolving Mantle Source Contributions in and around the Indian Ocean. Lithos, 282-283: 163-172. https://doi.org/10.1016/j.lithos.2017.03.007
|
Rao, D. G., Krishna, K. S., Sar, D., 1997. Crustal Evolution and Sedimentation History of the Bay of Bengal since the Cretaceous. Journal of Geophysical Research: Solid Earth, 102(B8): 17747-17768. https://doi.org/10.1029/96jb01339
|
Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1-2): 123-138. https://doi.org/10.1016/s0009-2541(01)00355-2
|
Shi, Y. R., Hou, C. Y., Anderson, J. L., et al., 2018. Zircon SHRIMP U-Pb Age of Late Jurassic OIB-Type Volcanic Rocks from the Tethyan Himalaya: Constraints on the Initial Activity Time of the Kerguelen Mantle Plume. Acta Geochimica, 37(3): 441-455. https://doi.org/10.1007/s11631-017-0239-2
|
Song, Y., Qian, Z.Y., Zhang, J.X., et al., 2018. Morphology of Detrital Zircon and Its Application in Provenance Analysis: Example from Cretaceous Continental Scientific Drilling Borehole in Songliao Basin. Earth Science, 43(6): 1997-2006 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201806017.htm
|
Torsvik, T. H., van der Voo, R., Preeden, U., et al., 2012. Phanerozoic Polar Wander, Palaeogeography and Dynamics. Earth-Science Reviews, 114(3-4): 325-368. https://doi.org/10.1016/j.earscirev.2012.06.007
|
Turner, C. C., Meert, J. G., Pandit, M. K., et al., 2014. A Detrital Zircon U-Pb and Hf Isotopic Transect across the Son Valley Sector of the Vindhyan Basin, India: Implications for Basin Evolution and Paleogeography. Gondwana Research, 26(1): 348-364. https://doi.org/10.1016/j.gr.2013.07.009
|
Wang, N.W., Liu, G.F., Chen, G.M., 1983. Regional Stratigraphy of Yamzhoyumco Area, Southern Xizang (Tibet). Tibet Plateau Geological Papers, (6): 7-26, 326-330 (in Chinese).
|
Williams, S. E., Whittaker, J. M., Granot, R., et al., 2013. Early India-Australia Spreading History Revealed by Newly Detected Mesozoic Magnetic Anomalies in the Perth Abyssal Plain. Journal of Geophysical Research: Solid Earth, 118(7): 3275-3284. https://doi.org/10.1002/jgrb.50239
|
Xie, C.M., Song, Y.H., Wang, M., et al., 2019. Age and Provenance of Sumdo Formation in Central Gangdise, Tibetan Plateau: Detrital Zircon U-Pb Geochronological Evidence. Earth Science, 44(7): 2224-2233 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201907003.htm
|
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
|
Yunnan Geological Survey Institute, 2004. 1: 250 000 Scale Longzi County Regional Geological Survey Report. China University of Geosciences Press, Wuhan, 62-81 (in Chinese).
|
Zhu, D. C., Chung, S. L., Mo, X. X., et al., 2009. The 132 Ma Comei-Bunbury Large Igneous Province: Remnants Identified in Present-Day Southeastern Tibet and Southwestern Australia. Geology, 37(7): 583-586. https://doi.org/10.1130/g30001a.1
|
Zhu, D.C., Xia, Y., Qiu, B.B., et al., 2013. Why do We Need to Propose the Early Cretaceous Comei Large Igneous Province in Southeastern Tibet? Acta Petrologica Sinica, 29(11): 3659-3670 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201311001.htm
|
Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1): 1-15 (in Chinese with English abstract). http://www.researchgate.net/publication/260835521_Origin_and_Paleozoic_Tectonic_Evolution_of_the_Lhasa_Terrane
|
丁枫, 高建国, 徐琨智, 2020. 西藏南部绒布地区基性岩脉岩石地球化学、年代学特征及地质意义. 岩石学报, 36(2): 391-408. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202002004.htm
|
付建刚, 李光明, 王根厚, 等, 2018. 北喜马拉雅E-W向伸展变形时限: 来自藏南错那洞穹隆Ar-Ar年代学证据. 地球科学, 43(8): 2638-2650. doi: 10.3799/dqkx.2018.530
|
李广伟, 2019. 喜马拉雅地区上三叠统沉积物来源——汇聚板块边缘物质构造属性. 中国科学: 地球科学, 49(9): 1452-1454. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201909010.htm
|
李三忠, 杨朝, 赵淑娟, 等, 2016. 全球早古生代造山带(Ⅰ): 碰撞型造山. 吉林大学学报(地球科学版), 46(4): 945-967. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604001.htm
|
刘庆山, 魏玉帅, 张宝森, 等, 2019. 古新世特提斯喜马拉雅南亚带石英砂岩成因及其构造意义: 以藏南岗巴地区古新统基堵拉组为例. 现代地质, 33(3): 561-573. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201903009.htm
|
宋鹰, 钱禛钰, 张俊霞, 等, 2018. 碎屑锆石形态学分类体系及其在物源分析中的应用: 以松辽盆地松科一井为例. 地球科学, 43(6): 1997-2006. doi: 10.3799/dqkx.2018.607
|
王乃文, 刘桂芳, 陈国铭, 1983. 西藏南部羊卓雍错区域地层研究. 青藏高原地质文集, (6): 7-26, 326-330.
|
西藏自治区地质矿产局, 1993. 西藏自治区区域地质志. 北京: 地质出版社, 160-195.
|
解超明, 宋宇航, 王明, 等, 2019. 冈底斯中部松多岩组形成时代及物源: 来自碎屑锆石U-Pb年代学证据. 地球科学, 44(7): 2224-2233. doi: 10.3799/dqkx.2019.024
|
云南省地质调查院, 2004. 1: 250 000隆子县幅区域地质调查报告. 武汉: 中国地质大学出版社, 62-81.
|
朱弟成, 夏瑛, 裘碧波, 等, 2013. 为什么要提出西藏东南部早白垩世措美大火成岩省. 岩石学报, 29(11): 3659-3670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311001.htm
|
朱弟成, 赵志丹, 牛耀龄, 等, 2012. 拉萨地体的起源和古生代构造演化. 高校地质学报, 18(1): 1-15 https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201201003.htm
|
![]() |
![]() |