• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 8
    Aug.  2021
    Turn off MathJax
    Article Contents
    Jiao Xianwei, Shi Yuruo, Yang Tianshui, Bian Weiwei, Wang Suo, Peng Wenxiao, 2021. U-Pb Age of Detrital Zircons from Lower Cretaceous in Eastern Tethyan Himalaya and Its Paleogeography. Earth Science, 46(8): 2850-2859. doi: 10.3799/dqkx.2020.308
    Citation: Jiao Xianwei, Shi Yuruo, Yang Tianshui, Bian Weiwei, Wang Suo, Peng Wenxiao, 2021. U-Pb Age of Detrital Zircons from Lower Cretaceous in Eastern Tethyan Himalaya and Its Paleogeography. Earth Science, 46(8): 2850-2859. doi: 10.3799/dqkx.2020.308

    U-Pb Age of Detrital Zircons from Lower Cretaceous in Eastern Tethyan Himalaya and Its Paleogeography

    doi: 10.3799/dqkx.2020.308
    • Received Date: 2020-07-31
      Available Online: 2021-09-14
    • Publish Date: 2021-08-15
    • The eastern Tethyan Himalaya is located at the combination area of eastern Gondwana during the Mesozoic, and its paleogeography plays a vital role in understanding the breakup of eastern Gondwana. A detailed chronological study of detrital zircons was carried out on the sedimentary strata in Taga area. The zircon U-Pb isotope results show that the youngest age is 126.6±2.7 Ma, suggesting that the lower limit of sampling section was the Early Cretaceous. The U-Pb age spectra of detrital zircons reveal three major age peaks at~520 Ma, ~890 Ma, and~1 200 Ma, of which the comparison with those from adjacent areas indicates similar age populations with eastern India and southwestern Australia. New results, together with the surrounding magmatic activity and the age of basalts in the lower part of sampling section, support that the studied section should be developed during the separation of the eastern Tethyan Himalayan from eastern Gondwana, and the main provenance of the sampling section might be from eastern India, southwestern Australia, and Antarctic.

       

    • loading
    • Bian, W. W., Yang, T. S., Ma, Y. M., et al., 2019. Paleomagnetic and Geochronological Results from the Zhela and Weimei Formations Lava Flows of the Eastern Tethyan Himalaya: New Insights into the Breakup of Eastern Gondwana. Journal of Geophysical Research: Solid Earth, 124(1): 44-64. https://doi.org/10.1029/2018jb016403
      Black, L. P., Kamo, S. L., Williams, I. S., et al., 2003. The Application of SHRIMP to Phanerozoic Geochronology: A Critical Appraisal of Four Zircon Standards. Chemical Geology, 200(1-2): 171-188. https://doi.org/10.1016/s0009-2541(03)00166-9
      Bureau of Geology Mineral Resources of Xizang Autonomous Region, 1993. Regional Geology of Xizang (Tibet) Autonomous Region. Geological Publishing House, Beijing, 160-195 (in Chinese).
      Cao, H. W., Huang, Y., Li, G. M., et al., 2018. Late Triassic Sedimentary Records in the Northern Tethyan Himalaya: Tectonic Link with Greater India. Geoscience Frontiers, 9(1): 273-291. https://doi.org/10.1016/j.gsf.2017.04.001
      Dai, J.G., Yin, A., Liu, W.C., et al., 2008. Nd Isotopic Compositions of the Tethyan Himalayan Sequence in Southeastern Tibet. Science China Earth Sciences, 51(9): 1306-1316. https://doi.org/10.1007/s11430-008-0103-7
      Dickinson, W. R., Gehrels, G. E., 2009. Use of U-Pb Ages of Detrital Zircons to Infer Maximum Depositional Ages of Strata: A Test against a Colorado Plateau Mesozoic Database. Earth and Planetary Science Letters, 288(1-2): 115-125. https://doi.org/10.1016/j.epsl.2009.09.013
      Ding, F., Gao, J.G., Xu, K.Z., 2020. Geochemistry, Geochronology and Geological Significances of the Basic Dykes in Rongbu Area, Southern Tibet. Acta Petrologica Sinica, 36(2): 391-408 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.02.04
      Direen, N. G., Cohen, B. E., Maas, R., et al., 2017. Naturaliste Plateau: Constraints on the Timing and Evolution of the Kerguelen Large Igneous Province and Its Role in Gondwana Breakup. Australian Journal of Earth Sciences, 64(7): 851-869. https://doi.org/10.1080/08120099.2017.1367326
      Fu, J.G., Li, G.M., Wang, G.H., et al., 2018. Timing of E-W Extension Deformation in North Himalaya: Evidences from Ar-Ar Age in the Cuonadong Dome, South Tibet. Earth Science, 43(8): 2638-2650 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808008.htm
      Gehrels, G., Kapp, P., DeCelles, P., et al., 2011. Detrital Zircon Geochronology of Pre-Tertiary Strata in the Tibetan-Himalayan Orogen. Tectonics, 30(5): TC5016. https://doi.org/10.1029/2011tc002868
      Hu, X.M., Jansa, L., Chen, L., et al., 2010. Provenance of Lower Cretaceous Wölong Volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the Final Breakup of Eastern Gondwana. Sedimentary Geology, 233(3-4): 193-205. https://doi.org/10.1016/j.sedgeo.2009.11.008
      Hu, X. M., Jansa, L., Wang, C. S., 2008. Upper Jurassic-Lower Cretaceous Stratigraphy in South-Eastern Tibet: A Comparison with the Western Himalayas. Cretaceous Research, 29(2): 301-315. https://doi.org/10.1016/j.cretres.2007.05.005
      Hughes, N. C., Myrow, P. M., McKenzie, N. R., et al., 2015. Age and Implications of the Phosphatic Birmania Formation, Rajasthan, India. Precambrian Research, 267: 164-173. https://doi.org/10.1016/j.precamres.2015.06.012
      Joy, S., Jelsma, H., Tappe, S., et al., 2015. SHRIMP U-Pb Zircon Provenance of the Sullavai Group of Pranhita-Godavari Basin and Bairenkonda Quartzite of Cuddapah Basin, with Implications for the Southern Indian Proterozoic Tectonic Architecture. Journal of Asian Earth Sciences, 111: 827-839. https://doi.org/10.1016/j.jseaes.2015.07.023
      Lewis, C. J., 2017. SHRIMP U-Pb Detrital Zircon Ages from GSWA Harvey 1, Western Australia: July 2013-June 2015. Geoscience Australia, Canberra. https://doi.org/10.11636/record.2017.020
      Lewis, C.J., Sircombe, K.N., 2013. Use of U-Pb Geochronology to Delineate Provenance of North West Shelf Sediments, Australia. In: Keep, M., Moss, S.J., eds., The Sedimentary Basins of Western Australia IV: Proceedings of the Petroleum Exploration Society of Australia Symposium. WA, Perth.
      Li, G.W., 2019. The Provenance Analysis of Late Triassic Sedimentary Sequences in Tethyan Himalaya: The Tectonic Attribute of Materials at the Convergent Margin. Scientia Sinica Terrae, 49(9): 1452-1454 (in Chinese). doi: 10.1360/SSTe-2019-0027
      Li, S.Z., Yang, Z., Zhao, S.J., et al., 2016. Global Early Paleozoic Orogens (Ⅰ): Collision-Type Orogeny. Journal of Jilin University (Earth Science Edition), 46(4): 945-967 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201604001.htm
      Liu, Q.S., Wei, Y.S., Zhang, B.S., et al., 2019. Genesis and Tectonic Significance of Quartz Sandstones in the Southern Subzone of Tethyan Himalayas: A Case Study on the Paleocene Jidula Formation in Gamba Area, Southern Tibet. Geoscience, 33(3): 561-573 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ201903009.htm
      Liu, Y. M., Dai, J. G., Wang, C. S., et al., 2020. Provenance and Tectonic Setting of Upper Triassic Turbidites in the Eastern Tethyan Himalaya: Implications for Early-Stage Evolution of the Neo-Tethys. Earth-Science Reviews, 200: 103030. https://doi.org/10.1016/j.earscirev.2019.103030
      Ludwig, K.R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
      Ma, Y.M., Yang, T.S., Bian, W.W., et al., 2016. Early Cretaceous Paleomagnetic and Geochronologic Results from the Tethyan Himalaya: Insights into the Neotethyan Paleogeography and the India-Asia Collision. Scientific Reports, 6: 21605. https://doi.org/10.1038/srep21605
      McQuarrie, N., Robinson, D., Long, S., et al., 2008. Preliminary Stratigraphic and Structural Architecture of Bhutan: Implications for the along Strike Architecture of the Himalayan System. Earth and Planetary Science Letters, 272(1-2): 105-117. https://doi.org/10.1016/j.epsl.2008.04.030
      Myrow, P. M., Hughes, N. C., Goodge, J. W., et al., 2010. Extraordinary Transport and Mixing of Sediment across Himalayan Central Gondwana during the Cambrian-Ordovician. Geological Society of America Bulletin, 122(9-10): 1660-1670. https://doi.org/10.1130/b30123.1
      Olierook, H. K. H., Merle, R. E., Jourdan, F., 2017. Toward a Greater Kerguelen Large Igneous Province: Evolving Mantle Source Contributions in and around the Indian Ocean. Lithos, 282-283: 163-172. https://doi.org/10.1016/j.lithos.2017.03.007
      Rao, D. G., Krishna, K. S., Sar, D., 1997. Crustal Evolution and Sedimentation History of the Bay of Bengal since the Cretaceous. Journal of Geophysical Research: Solid Earth, 102(B8): 17747-17768. https://doi.org/10.1029/96jb01339
      Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1-2): 123-138. https://doi.org/10.1016/s0009-2541(01)00355-2
      Shi, Y. R., Hou, C. Y., Anderson, J. L., et al., 2018. Zircon SHRIMP U-Pb Age of Late Jurassic OIB-Type Volcanic Rocks from the Tethyan Himalaya: Constraints on the Initial Activity Time of the Kerguelen Mantle Plume. Acta Geochimica, 37(3): 441-455. https://doi.org/10.1007/s11631-017-0239-2
      Song, Y., Qian, Z.Y., Zhang, J.X., et al., 2018. Morphology of Detrital Zircon and Its Application in Provenance Analysis: Example from Cretaceous Continental Scientific Drilling Borehole in Songliao Basin. Earth Science, 43(6): 1997-2006 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201806017.htm
      Torsvik, T. H., van der Voo, R., Preeden, U., et al., 2012. Phanerozoic Polar Wander, Palaeogeography and Dynamics. Earth-Science Reviews, 114(3-4): 325-368. https://doi.org/10.1016/j.earscirev.2012.06.007
      Turner, C. C., Meert, J. G., Pandit, M. K., et al., 2014. A Detrital Zircon U-Pb and Hf Isotopic Transect across the Son Valley Sector of the Vindhyan Basin, India: Implications for Basin Evolution and Paleogeography. Gondwana Research, 26(1): 348-364. https://doi.org/10.1016/j.gr.2013.07.009
      Wang, N.W., Liu, G.F., Chen, G.M., 1983. Regional Stratigraphy of Yamzhoyumco Area, Southern Xizang (Tibet). Tibet Plateau Geological Papers, (6): 7-26, 326-330 (in Chinese).
      Williams, S. E., Whittaker, J. M., Granot, R., et al., 2013. Early India-Australia Spreading History Revealed by Newly Detected Mesozoic Magnetic Anomalies in the Perth Abyssal Plain. Journal of Geophysical Research: Solid Earth, 118(7): 3275-3284. https://doi.org/10.1002/jgrb.50239
      Xie, C.M., Song, Y.H., Wang, M., et al., 2019. Age and Provenance of Sumdo Formation in Central Gangdise, Tibetan Plateau: Detrital Zircon U-Pb Geochronological Evidence. Earth Science, 44(7): 2224-2233 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201907003.htm
      Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Yunnan Geological Survey Institute, 2004. 1: 250 000 Scale Longzi County Regional Geological Survey Report. China University of Geosciences Press, Wuhan, 62-81 (in Chinese).
      Zhu, D. C., Chung, S. L., Mo, X. X., et al., 2009. The 132 Ma Comei-Bunbury Large Igneous Province: Remnants Identified in Present-Day Southeastern Tibet and Southwestern Australia. Geology, 37(7): 583-586. https://doi.org/10.1130/g30001a.1
      Zhu, D.C., Xia, Y., Qiu, B.B., et al., 2013. Why do We Need to Propose the Early Cretaceous Comei Large Igneous Province in Southeastern Tibet? Acta Petrologica Sinica, 29(11): 3659-3670 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201311001.htm
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1): 1-15 (in Chinese with English abstract). http://www.researchgate.net/publication/260835521_Origin_and_Paleozoic_Tectonic_Evolution_of_the_Lhasa_Terrane
      丁枫, 高建国, 徐琨智, 2020. 西藏南部绒布地区基性岩脉岩石地球化学、年代学特征及地质意义. 岩石学报, 36(2): 391-408. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202002004.htm
      付建刚, 李光明, 王根厚, 等, 2018. 北喜马拉雅E-W向伸展变形时限: 来自藏南错那洞穹隆Ar-Ar年代学证据. 地球科学, 43(8): 2638-2650. doi: 10.3799/dqkx.2018.530
      李广伟, 2019. 喜马拉雅地区上三叠统沉积物来源——汇聚板块边缘物质构造属性. 中国科学: 地球科学, 49(9): 1452-1454. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201909010.htm
      李三忠, 杨朝, 赵淑娟, 等, 2016. 全球早古生代造山带(Ⅰ): 碰撞型造山. 吉林大学学报(地球科学版), 46(4): 945-967. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604001.htm
      刘庆山, 魏玉帅, 张宝森, 等, 2019. 古新世特提斯喜马拉雅南亚带石英砂岩成因及其构造意义: 以藏南岗巴地区古新统基堵拉组为例. 现代地质, 33(3): 561-573. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201903009.htm
      宋鹰, 钱禛钰, 张俊霞, 等, 2018. 碎屑锆石形态学分类体系及其在物源分析中的应用: 以松辽盆地松科一井为例. 地球科学, 43(6): 1997-2006. doi: 10.3799/dqkx.2018.607
      王乃文, 刘桂芳, 陈国铭, 1983. 西藏南部羊卓雍错区域地层研究. 青藏高原地质文集, (6): 7-26, 326-330.
      西藏自治区地质矿产局, 1993. 西藏自治区区域地质志. 北京: 地质出版社, 160-195.
      解超明, 宋宇航, 王明, 等, 2019. 冈底斯中部松多岩组形成时代及物源: 来自碎屑锆石U-Pb年代学证据. 地球科学, 44(7): 2224-2233. doi: 10.3799/dqkx.2019.024
      云南省地质调查院, 2004. 1: 250 000隆子县幅区域地质调查报告. 武汉: 中国地质大学出版社, 62-81.
      朱弟成, 夏瑛, 裘碧波, 等, 2013. 为什么要提出西藏东南部早白垩世措美大火成岩省. 岩石学报, 29(11): 3659-3670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311001.htm
      朱弟成, 赵志丹, 牛耀龄, 等, 2012. 拉萨地体的起源和古生代构造演化. 高校地质学报, 18(1): 1-15 https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201201003.htm
    • dqkxzx-46-8-2850-附表.doc
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)

      Article views (998) PDF downloads(72) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return