• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 8
    Aug.  2024
    Turn off MathJax
    Article Contents
    Lin Shaowei, Zhang Qiangqiang, Gao Xiaoying, Zheng Yongfei, 2024. Metamorphic Evolution of Garnet Amphibolite at Songshugou in the North Qinling Orogen: Evidence from Garnet Geochemistry and Zircon Geochronology. Earth Science, 49(8): 2714-2735. doi: 10.3799/dqkx.2020.320
    Citation: Lin Shaowei, Zhang Qiangqiang, Gao Xiaoying, Zheng Yongfei, 2024. Metamorphic Evolution of Garnet Amphibolite at Songshugou in the North Qinling Orogen: Evidence from Garnet Geochemistry and Zircon Geochronology. Earth Science, 49(8): 2714-2735. doi: 10.3799/dqkx.2020.320

    Metamorphic Evolution of Garnet Amphibolite at Songshugou in the North Qinling Orogen: Evidence from Garnet Geochemistry and Zircon Geochronology

    doi: 10.3799/dqkx.2020.320
    • Received Date: 2020-12-03
      Available Online: 2024-08-27
    • Publish Date: 2024-08-25
    • The metamorphic evolution and tectonic framework of the North Qinling orogen in the Early Paleozoic has long been controversial and is one of the widely concerned geological problems. Although much isotopic work has been done, the timing of peak eclogite-facies metamorphism is still debatable. Therefore, an intergrated study of garnet geochemistry and zircon geochronology was carried out for garnet amphibolite from Songshugou Complex in the North Qinling orogen. Based on the characristics of the petrographic microstructures, mineral inclusions, and mineral compositions, three metamorphic stages are recognized for mineral assemblages in the garnet amphibolite: prograde stage (522-611 ℃/1.4-3.0 kbar), peak stage (742-749 ℃/ > 3.0 GPa) and retrograde stage (726-764 ℃/7.3-8.3 kbar). Geochronology study reveals that zircon grains in thin sections and mounts record three episodes of growth or reworking, respectively: (1) relict magmatic cores (G1), showing typical oscillatory zoning with middle Neoprotrozoic U-Pb ages of 746±16 Ma to 720±7 Ma and steep HREE patterns with obvious negative Eu anomalies, indicating the protolith of garnet amphibolite was produced in the Neoproterozoic; (2) metamorphically recrystallized domains (G2), exhibiting faintish oscillatory zoning or unzoning with discordant U-Pb ages ranging from 547±17 Ma to 492±15 Ma and steep HREE patterns with positive to negative Eu anomalies; (3) metamorphically grown domains (G3), which occur not only as overgrown rim in mounts but also as mineral inclusion within garnet rims in thin sections. They gave consistent 206Pb/238U age of 491 Ma to 480 Ma(average age is 488±10 Ma), flat HREE patterns with low Th/U ratios of 0.01 to 0.04, high MREE contents and no obvious Eu anomalies, indicating the timing of peak eclogite-facies metamorphism. In addition, the rod-like exsolution composed of rutile + apatite +quartzis identified in the garnet rim that formed at the peak metamorphic stage from the garnet amphibolite, indicating that it might have ever underwent ultra-high pressure metamorphism. Therefore, the garnet amphibolite has its protolith from the North Qinling microcontinent that was separated from Rodinia supercontinent between 746 Ma and 720 Ma. It was deeply subductedfor metamorphism in the Cambrian toachieve the peak eclogite-facies metamorphismat 488 Ma, and then underwent exhumation for the retrograde amphibolite facies metamorphism.

       

    • loading
    • Bader, T., Franz, L., Ratschbacher, L., et al., 2013. The Heart of China Revisited: Ⅱ Early Paleozoic (Ultra)High‐Pressure and (Ultra)High‐Temperature Metamorphic Qinling Orogenic Collage. Tectonics, 32(4): 922-947. https://doi.org/10.1002/tect.20056
      Bader, T., Zhang, L. F., Li, X. W., et al., 2020. High-P Granulites of the Songshugou Area (Qinling Orogen, East‐central China): Petrography, Phase Relations, and U/Pb Zircon Geochronology. Journal of Metamorphic Geology, 38(4): 421-450. https://doi.org/10.1111/jmg.12527
      Bhadra, S., Bhattacharya, A., 2007. The Barometer Tremolite+Tschermakite+2Albite=2Pargasite+8Quartz: Constraints from Experimental Data at Unit Silica Activity, with Application to Garnet-Free Natural Assemblages. American Mineralogist, 92(4): 491-502. https://doi.org/10.2138/am.2007.2067
      Carswell, D. A., O'Brien, P. J., Wilson, R. N., et al., 1997. Thermobarometry of Phengite‐Bearing Eclogites in the Dabie Mountains of Central China. Journal of Metamorphic Geology, 15(2): 239-252. https://doi.org/10.1111/j.1525-1314.1997.00014.x
      Carswell, D. A., Wilson, R. N., Zhai, M., 2000. Metamorphic Evolution, Mineral Chemistry and Thermobarometry of Schists and Orthogneisses Hosting Ultra-High Pressure Eclogites in the Dabieshan of Central China. Lithos, 52(1/2/3/4): 121-155. https://doi.org/10.1016/s0024-4937(99)00088-2
      Chen, D. L., Liu, L., Liao, X. Y., 2019. The Distribution, Metamorphic Rocks in the North Qinling Orogenic Belt, P-T-t Evolution and Formation Mechanism of HP-UHP. Earth Science, 44(12): 4017-4027 (in Chinese with English abstract).
      Chen, D. L., Ren, Y. F., Gong, X. K., et al., 2015. Identification and Its Geological Significance of Eclogite in Songshugou, the North Qinling. Acta Petrologica Sinica, 31(7): 1841-1854 (in Chinese with English abstract).
      Chen, R. X., Zheng, Y. F., 2017. Metamorphic Zirconology of Continental Subduction Zones. Journal of Asian Earth Sciences, 145(473-48): 149-176. https://doi.org/10.1016/j.jseaes.2017.04.029
      Chen, R. X., Zheng, Y. F., Xie, L. W., 2010. Metamorphic Growth and Recrystallization of Zircon: Distinction by Simultaneous In-Situ Analyses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen. Lithos, 114(1/2): 132-154. https://doi.org/10.1016/j.lithos.2009.08.006
      Chen, Y. X., Zheng, Y. F., Chen, R. X., et al., 2011. Metamorphic Growth and Recrystallization of Zircons in Extremely 18O-Depleted Rocks during Eclogite-Facies Metamorphism: Evidence from U-Pb Ages, Trace Elements, and O-Hf Isotopes. Geochimica et Cosmochimica Acta, 75(17): 4877-4898. https://doi.org/10.1016/j.gca.2011.06.003
      Cheng, H., Zhang, C., Vervoort, J. D., et al., 2012. Timing of Eclogite Facies Metamorphism in the North Qinling by U-Pb and Lu-Hf Geochronology. Lithos, 136-139: 46-59. https://doi.org/10.1016/j.lithos.2011.06.003
      Diwu, C. R., Long, X. P., 2019. Tectonic Evolution of the North Qinling Orogenic Belt, Central China: Insights from Metamafic Rocks of the Songshugou Complex. Geological Journal, 54(4): 2382-2399. https://doi.org/10.1002/gj.3302
      Dong, Y. P., Zhang, G. W., Hauzenberger, C., et al., 2011b. Palaeozoic Tectonics and Evolutionary History of the Qinling Orogen: Evidence from Geochemistry and Geochronology of Ophiolite and Related Volcanic Rocks. Lithos, 122(1/2): 39-56. https://doi.org/10.1016/j.lithos.2010.11.011
      Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011a. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002
      Ernst, W. G., Tsujimori, T., Zhang, R., et al., 2007. Permo-Triassic Collision, Subduction-Zone Metamorphism, and Tectonic Exhumation along the East Asian Continental Margin. Annual Review of Earth and Planetary Sciences, 35(1): 73-110. https://doi.org/10.1146/annurev.earth.35.031306.140146
      Evripidis, D. M., and Dimitris, K. K., 2001. Diamond, Former Coesite and Supersilicic Garnet in Metasedimentary Rocks from the Greek Rhodope: A New Ultrahigh-Pressure MetamorphicProvince Established. Earth and Planetary Science Letters, 192: 497-506. https://doi.org/10.1016/S0012-821X(03)00378-9
      Gao, X. Y., Zhang, Q. Q., Zheng, Y. F., et al., 2017. Petrological and Zircon Evidence for the Early Cretaceous Granulite-Facies Metamorphism in the Dabie Orogen, China. Lithos, 284-285(B6): 11-29. https://doi.org/10.1016/j.lithos.2017.03.024
      Gao, X. Y., Zheng, Y. F., Chen, Y. X., 2011. U-Pb Ages and Trace Elements in Metamorphic Zircon and Titanite from UHP Eclogite in the Dabie Orogen: Constraints on P-T-T Path. Journal of Metamorphic Geology, 29(7): 721-740. https://doi.org/10.1111/j.1525-1314.2011.00938.x
      Gao, X. Y., Zheng, Y. F., Chen, Y. X., et al., 2015. Zircon Geochemistry Records the Action of Metamorphic Fluid on the Formation of Ultrahigh-Pressure Jadeite Quartzite in the Dabie Orogen. Chemical Geology, 419(1-2): 158-175. https://doi.org/10.1016/j.chemgeo.2015.10.043
      Gao, X. Y., 2019. Large-Scale Flow of Metamorphic Fluids in a Continental Subduction Zone: Evidence from Coesite-Bearing Jadeite Quartzite in the Dabie Orogen. Earth Science, 44(12): 4064-4071 (in Chinese with English abstract).
      Gong, X. K., Chen, D. L., Reng, Y. F., et al., 2016. The Discovery and Geological Significance of Coesite-Bearing Plagioclase Amphibolite in the North Qinling Orogenic Belt. Chin. Sci. Bull. , 61(12): 1365-1381 (in Chinese with English abstract). doi: 10.1360/N972015-01277
      Holland, T., Blundy, J., 1994. Non-Ideal Interactions in Calcic Amphiboles and their Bearing on Amphibole-Plagioclase Thermometry. Contributions to Mineralogy and Petrology, 116(4): 433-447. https://doi.org/10.1007/bf00310910
      Hu, N. G., Zhao, D. L., Xu, B. Q., et al., 1994. The Discovery and Geological Significance of Coesite-Bearing Eclogite in the North Qinling Orogenic Belt. Chin. Sci. Bull. , , (21): 2013(in Chinese with English abstract).
      Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093. https://doi.org/10.1039/b804760j
      Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
      Kohn, M. J., 2016. Metamorphic Chronology: a Tool for all Ages: Past Achievements and Future Prospects. American Mineralogist, 101(1): 25-42. https://doi.org/10.2138/am-2016-5146
      Konrad-Schmolke, M., Babist, J., Handy, M. R., et al., 2006. The Physico-Chemical Properties of a Subducted Slab from Garnet Zonation Patterns (Sesia Zone, Western Alps). Journal of Petrology, 47(11): 2123-2148. https://doi.org/10.1093/petrology/egl039
      Konrad-Schmolke, M., Handy, M. R., Babist, J., et al., 2005. Thermodynamic Modelling of Diffusion-Controlled Garnet Growth. Contributions to Mineralogy and Petrology, 149(2): 181-195. https://doi.org/10.1007/s00410-004-0643-6
      Konrad-Schmolke, M., O'Brien, P. J., de Capitani, C., et al., 2008. Garnet Growth at High- And Ultra-High Pressure Conditions and the Effect of Element Fractionation on Mineral Modes and Composition. Lithos, 103(3/4): 309-332. https://doi.org/10.1016/j.lithos.2007.10.007
      Li, Y., Yang, J. S., Dilek, Y., et al., 2015. Crustal Architecture of the Shangdan Suture Zone in the Early Paleozoic Qinling Orogenic Belt, China: Record of Subduction Initiation and Backarc Basin Development. Gondwana Research, 27(2): 733-744. https://doi.org/10.1016/j.gr.2014.03.006
      Li, Y., Zhou, H. W., Li, Q. L., et al., 2014. Palaeozoic Polymetamorphism in the North Qinling Orogenic Belt, Central China: Insights from Petrology and in Situ Titanite and Zircon U-Pb Geochronology. Journal of Asian Earth Sciences, 92: 77-91. https://doi.org/10.1016/j.jseaes. 2014.05.023 doi: 10.1016/j.jseaes.2014.05.023
      Li, Y., Zhou, H. W., Zhong, Z. Q., et al., 2012. Two Eopaleozoic Metamorphic Events in North Qinling: Petrology and Zircon U-Pb Geochronology Evidence from Basic Rocks in the Songshugou Area. Earth Science, 37: 111-124 (in Chinese with English abstract).
      Liao, X. Y., Liu, L., Wang, Y. W., et al., 2016. Multi-Stage Metamorphic Evolution of Retrograde Eclogite with a Granulite-Facies Overprint in the Zhaigen Area of the North Qinling Belt, China. Gondwana Research, 30(18): 79-96. https://doi.org/10.1016/j.gr.2015.09.012
      Liou, J. G., Ernst, W. G., Zhang, R. Y., et al., 2009. Ultrahigh-Pressure Minerals and Metamorphic Terranes: the View from China. Journal of Asian Earth Sciences, 35(3/4): 199-231. https://doi.org/10.1016/j.jseaes. 2008. 10.012 doi: 10.1016/j.jseaes.2008.10.012
      Liu, F. L., Liou, J. G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism: A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1): 1-39. https://doi.org/10.1016/j.jseaes. 2010.08.007 doi: 10.1016/j.jseaes.2010.08.007
      Liu, J. F., Sun, W. D., Sun, Y., Sun, Y. L., Liu, F. J., 2008. Geochemistry and Platinum-Group Elements of Ultramafic Rocks from the Songshugou Area in the Eastern Qinling: Constraints on Petrogenesis. Geological Review, 54: 57-64 (in Chinese)
      Liu, L., Liao, X. Y., Wang, Y. W., et al., 2016. Early Paleozoic Tectonic Evolution of the North Qinling Orogenic Belt in Central China: Insights on Continental Deep Subduction and Multiphase Exhumation. Earth-Science Reviews, 159(4): 58-81. https://doi.org/10.1016/j.earscirev.2016.05.005
      Liu, L., Liao, X. Y., Zhang, C. L., et al., 2013. Multi-Matemorphic Timings of HP-UHP Rocks in the North Qinling and Their Geological Implications. Acta Petrologica Sinica 29(5): 1634-1656 (in Chinese with English abstract).
      Liu, L., Liao, X. Y., Zhang, C. L., et al., 2013. Multi-MetamorphicTimings of HP-UHP Rocks in the North Qinling and Their Geological Implications. Acta Petrologica Sinica. 29: 1634-1656 (in Chinese with English abstract).
      Liu, L., Sun, Y., Xiao, P., et al. 2002. Discovery of Ultrahigh-Pressure Magnesite-Bearing Garnet Lher- Zolite (> 3.8 GPa) in the Altyn Tagh, Northwest China. Chinese Science Bulletin, 47(11): 881. https://doi.org/10.1360/02tb9197
      Liu, L., Zhou, D. W., Dong, Y. P., et al., 1995. High-Pressure Metabasites and Their Retrograde Metamorphic P-T-t Path from Songshugou Area, Eastern Qinling Mountain. Acta Petrologica Sinica, (2): 127-136 (in Chinese with English abstract).
      Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010a. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      Liu, Y., Gao, S., Hu, Z., et al., 2010b. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
      Ludwig, K. R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley, 4: 70.
      Luo, F. H., Chen, D. L., Gong, X. K., Tang, W. J., Hu. Y. H., Ren, Y. F., 2018. Multi-Stages Partial Melting of North Qinling Ultrahigh Pressure Metamorphic Terrane during Exhumation. Acta Petrologica Sinica, 34(12): 3671-3689 (in Chinese with English abstract).
      Meng, Q. R., Zhang, G. W., 2000. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics, 323(3/4): 183-196. https://doi.org/10.1016/s0040-1951(00)00106-2
      Pei, X. Z., Li, Y., Lu, S. N., et al., 2005. Zircon U-Pb Ages of the Guanzizhen Intermadiate-Basic Igneous Complex in Tianshui Area, West Qinling, and Their Geological Siginificance. Geological Bulletin of China, 24: 23-29.
      Qian, J. H., Yang, X. Q., Liu, L., et al., 2013. Zircon U-Pb Dating, Mineral Inclusions, Lu-Hf Isotopic Data and Their Geological Significance of Garnet Amphibolite from Songshugou, North Qinling. Acta Petrologica Sinica, 29(9): 3087-3098(in Chinese with English abstract).
      Ratschbacher, L., Hacker, B. R., Calvert, A., et al., 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 366: 1-53. https://doi.org/10.1016/S0040-1951(03)00053-2
      Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123-138. https://doi.org/10.1016/s0009-2541(01)00355-2
      Rubatto, D., Hermann, J., 2003. Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps): Implications for Zr and Hf Budget in Subduction Zones. Geochimica et Cosmochimica Acta, 67(12): 2173-2187. https://doi.org/10.1016/s0016-7037(02)01321-2
      Song, S., Zhang, L., Niu, Y., et al., 2005. Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau: A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision. Earth and Planetary Science Letters, 234(1/2): 99-118. https://doi.org/10.1016/j.epsl.2005.02.036
      Spear, F. S., 1993. MetamorphicPhase Equilibria and Pressure-Temperature-Time Path. Monograph of Mineralogical Society of America, Washington D. C., 799.
      Stipska, P., Hacker, B. R., Racek, M., et al., 2015. Monazite Dating of Prograde and Retrograde P-T-d Paths in the Barrovian Terrane of the Thaya Window, Bohemian Massif. Journal of Petrology, 56(5): 1007-1035. https://doi.org/10.1093/petrology/egv026
      Stipska, P., Powell, R., Hacker, B. R., et al., 2016. Uncoupled U/Pb and REE Response in Zircon during the Transformation of Eclogite to Mafic and Intermediate Granulite (Blanský Les, Bohemian Massif). Journal of Metamorphic Geology, 34(6): 551-572. https://doi.org/10.1111/jmg.12193
      Stipska, P., Závada, P., Collett, S., etal., 2020. Eocene Migmatite Formation and Diachronous Burial Revealed by Petrochronology in NW Himalaya, Zanskar. Journal of Metamorphic Geology, 38(6): 655-691. https://doi.org/10.1111/jmg.12534
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tang, L., Santosh, M., Dong, Y. P., et al., 2016. Early Paleozoic Tectonic Evolution of the North Qinling Orogenic Belt: Evidence from Geochemistry, Phase Equilibrium Modeling and Geochronology of Metamorphosed Mafic Rocks from the Songshugou Ophiolite. Gondwana Research, 30: 48-64. https://doi.org/10.1016/j.gr.2014.10.006
      Tomkins, H. S., Powell, R., Ellis, D. J., 2007. The Pressure Dependence of the Zirconium-in‐Rutile Thermometer. Journal of Metamorphic Geology, 25(6): 703-713. https://doi.org/10.1111/j.1525-1314.2007.00724.x
      Wang, H., Wu, Y. B., Gao, S., et al., 2011. Eclogite Origin and Timings in the North Qinling Terrane, and their Bearing on the Amalgamation of the South and North China Blocks. Journal of Metamorphic Geology, 29(9): 1019-1031. https://doi.org/10.1111/j.1525-1314.2011.00955.x
      Wang, H., Wu, Y. B., Gao, S., et al., 2013. Continental Origin of Eclogites in the North Qinling Terrane and its Tectonic Implications. Precambrian Research, 230: 13-30. https://doi.org/10.1016/j.precamres.2012.12.010
      Wang, H., Wu, Y. B., Gao, S., et al., 2014. Deep Subduction of Continental Crust in Accretionary Orogen: Evidence from U-Pb Dating on Diamond-Bearing Zircons from the Qinling Orogen, Central China. Lithos, 190-191: 420-429. https://doi.org/10.1016/j.lithos.2013.12.021
      Wei, C. J., Clarke, G. L., 2011. Calculated Phase Equilibria for MORB Compositions: A Reappraisal of the Metamorphic Evolution of Lawsonite Eclogite. Journal of Metamorphic Geology, 29(9): 939-952. https://doi.org/10.1111/j.1525-1314.2011.00948.x
      Wiedenbeck, M., Alle, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostand Newsl, 19: 1-23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
      Wu, Y. B., Zheng, Y. F, 2013. Tectonic Evolution of a Composite CollisionOrogen: An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23: 1402-1428. https://doi.org/10.1016/j.gr.2012.09.007
      Wu, Y. B., Gao, S., Zhang, H. F., et al., 2008. Timing of UHP Metamorphism in the Hong'an Area, Western Dabie Mountains, China: Evidence from Zircon U-Pb Age, Trace Element and Hf Isotope Composition. Contributions to Mineralogy and Petrology, 155(1): 123-133. https://doi.org/10.1007/s00410-007-0231-7
      Wu, Y. B., Zheng, Y. F., Zhao, Z. F., et al., 2006. U-Pb, Hf and O Isotope Evidence for Two Episodes of Fluid-Assisted Zircon Growth in Marble-Hosted Eclogites from the Dabie Orogen. Geochimica et Cosmochimica Acta, 70(14): 3743-3761. https://doi.org/10.1016/j.gca.2006.05.011
      Wu, Y. B., Zheng, Y. F., 2004. Mineralogical Studies of Zircon Origin and Constraints on the Interpretation of U-PB age. Chin Sci Bull, (16): 1589-1604(in Chinese with English abstract).
      Xia, Q. X., Zheng, Y. F., Chen, Y. X., 2013. Protolith Control on Fluid Availability for Zircon Growth during Continental Subduction-Zone Metamorphism in the Dabie Orogen. Journal of Asian Earth Sciences, 67-68: 93-113. https://doi.org/10.1016/j.jseaes.2013.02.014
      Xia, Q. X., Zheng, Y. F., Hu, Z. C., 2010. Trace elements in Zircon and Coexisting Minerals from Low-T/UHP Metagranite in the Dabie Orogen: Implications for Action of Supercritical Fluid during Continental Subduction-Zone Metamorphism. Lithos, 114: 385-412. https://doi.org/10.1016/j.lithos.2009.09.013
      Xia, Q. X., Zhou, L. G., 2017. Different Origins of Garnet in High Pressure to Ultrahigh Pressure Metamorphic Rocks. Journal of Asian Earth Sciences, 145(2327): 130-148. https://doi.org/10.1016/j.jseaes.2017.03.037
      Xia, Q. X., 2019. Different Origins of Garnet in High to Ultrahigh Pressure Metamorphic Rocks. Earth Science, 44(12): 4042-4049 (in Chinese with English abstract).
      Xia, Q. X., Gao, P., Yang, G., et al., 2019. The Origin of Garnets in Anatectic Rocks from the Eastern Himalayan Syntaxis, Southeastern Tibet: Constraints from Major and Trace Element Zoning and Phase Equilibrium Relationships. Journal of Petrology, 60(11): 2241-2280. https://doi.org/10.1093/petrology/egaa009
      Xia, Q. X., Zheng, Y. F., 2011. The Composition and Chemical Zoning in Garnet from High to Ultrahigh Pressure Metamorphic Rocks. Acta Petrologica Sinica, 27(02): 433-450 (in Chinese with English abstract).
      Xia, Q. X., Zhou. L. G., Zheng, Y. F., 2013. Zonation and Multiphase Growth of Garnet in UHP Metamorphic Rocks of Continental Subduction Zone. Chin Sci Bull, 58: 2138-2144 (in Chinese). doi: 10.1360/csb2013-58-22-2138
      Xiang, H., Zhong, Z. Q., Li, Y., et al., 2014. Early Paleozoic Poly-Metamorphism and Anataxis in the North Qinling Orogeny: Evidence from U-Pb Zircon Geochronology. Acta Petrologica Sinica, 30(8): 2421-2434(in Chinese with English abstract).
      Yang, J. S., Liu, F. L., Wu, C., et al., 2005. Two Ultrahigh-Pressure Metamorphic Events Recognized in the Central Orogenic Belt of China: Evidence from the U-Pb Dating of Coesite-Bearing Zircons. International Geology Review, 47(4): 327-343. https://doi.org/10.2747/0020-6814. 47.4.327 doi: 10.2747/0020-6814.47.4.327
      Yang, J. S., Xu, Z. Q., Dobrzhinetskaya, L. F., et al., 2003. Discovery of Metamorphic Diamonds in Central China: An Indication of a > 4 000‐km‐Long Zone of Deep Subduction Resulting from Multiple Continental Collisions. Terra Nova, 15(6): 370-379. https://doi.org/10.1046/j.1365-3121.2003.00511.x
      Yang, J. S., Xu, Z. Q., Pei, X. Z., et al., 2002. Diamond Discovery in Qinling Orogen: The New Evidence for a Giant Ultrahigh Pressure Metamorphic Belt Across Central China and Identification of Deep Subduction in Paleozoic and Mesozoic Eras. Acta Geologica Sinica, 4: 484-495 (in Chinese)
      Ye, K., Cong, B. L., Ye, D. N., 2000. The Possible Subduction of Continental Material to Depths Greater than 200 km. Nature, 407(6805): 734-736. https://doi.org/10.1038/35037566
      Yu, H., Zhang, H. F., Li, X. H., et al., 2016. Tectonic Evolution of the North Qinling Orogen from Subduction to Collision and Exhumation: Evidence from Zircons in Metamorphic Rocks of the Qinling Group. Gondwana Research, 30(Suppl.): 65-78. https://doi.org/10.1016/j.gr.2015.07.003
      Zhang, G. B., Ellis, D. J., Christy, A. G., et al., 2010. Zr-in-Rutile Thermometry in HP/UHP Eclogites from Western China. Contributions to Mineralogy and Petrology, 160(3): 427-439. https://doi.org/10.1007/s00410-009-0486-2
      Zhang, G. W., Meng, Q. R., Yu, Z., et al., 1996. Orogenesis and Dynamics of the Qinling Orogenic Belt. Science in China (Series D), 39: 225-234.
      Zhang, G. W., Zhang, B. R., Yuan, X. C., et al., 2001. Qinling Orogenic Belt and Continental Dynamics. Science Press, Beijing(in Chinese).
      Zhang, G. W., Zhang, Z. Q., Dong, Y. P., 1995. Nature of Main Tectono-Lithostratigraphic Units of the Qinling Orogen: Implications for the Tectonic Evolution. Acta Geologica Sinica, 11(2): 101-114 (in Chinese with English abstract).
      Zhang, H. F., Yu, H., 2019. Petrological and Tectonic Evolution of Orogenic Peridotite Massif: A Case of Songshugou Peridotites. Earth Science, 44(4): 1057-1066 (in Chinese with English abstract).
      Zhang, J. X., Meng, F. C., and Qi, X. X., 2002. Comparison and Geological Significance of Garnet Ring between Dachaidan and Xitishan Eclogites in the Northern Margin of Qaidam Basin. Geological Bulletin of China, (3): 123-129(in Chinese).
      Zhang, J. X., Yu, S. Y., and Meng, F. C., 2011. Ployphase Early Paleozoic Metamorphism in the Northern Qinling Orogenic Belt. Acta Petrologica Sinica, 27(4): 1179-1190(in Chinese with English abstract).
      Zhang, S. B., Zheng, Y. F., Zhao, Z. F., et al., 2009. Origin of TTG-Like Rocks from Anatexis of Ancient Lower Crust: Geochemical Evidence from Neoproterozoic Granitoids in South China. Lithos, 113(3/4): 347-368. https://doi.org/10.1016/j.lithos.2009.04.024
      Zhang, Z. J., 1999. MetamorphicEvolution of Garnet-Clinopyroxene-Amphibole Rocks from the Proterozoic Songshugou Mafic Ultramafic Complex, Qinling Mountains, Central China. Island Arc, 8: 259-280. https://doi.org/10.1046/j.1440-1738.1999.00236.x
      Zhang, Z. Q., Liu, D. Y., Fu, G. M., 1994. Isotopic Dating of Metamorphic Strata in The North Qinling. Geological Press, Beijing, 211-215(in Chinese).
      Zheng, Y. F., 2008. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Science Bulletin, 53(20): 3081-3104. https://doi.org/10.1007/s11434-008-0388-0
      Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328(2): 5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005
      Zheng, Y. F., Chen, R. X., 2017. Regional Metamorphism at Extreme Conditions: Implications for Orogeny at Convergent Plate Margins. Journal of Asian Earth Sciences, 145(22): 46-73. https://doi.org/10.1016/j.jseaes. 2017. 03.009 doi: 10.1016/j.jseaes.2017.03.009
      Zheng, Y. F., Chen, R. X., Zhao, Z. F., 2009. Chemical Geodynamics of Continental Subduction-Zone Metamorphism: Insights from Studies of the Chinese Continental Scientific Drilling (CCSD) Core Samples. Tectonophysics, 475(2): 327-358. https://doi.org/10.1016/j.tecto.2008.09.014
      Zheng, Y. F., Chen, Y. X., Dai, L. Q., et al., 2015. Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens. Science China Earth Sciences, 58(7): 1045-1069. https://doi.org/10.1007/s11430-015-5097-3
      Zheng, Y. F., Wu, Y. B., Chen, F. K., et al., 2004. Zircon U-Pb and Oxygen Isotope Evidence for a Large-Scale 18O Depletion Event in Igneous Rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta, 68(20): 4145-4165. https://doi.org/10.1016/j.gca.2004.01.007
      Zheng, Y. F., Zhao, Z. F., Chen, Y. X., 2013. Continental Subduction Channel Processes: Plate Interface Interaction during Continental Collision. Chinese Science Bulletin, 58(35): 4371-4377. https://doi.org/10.1007/s11434-013-6066-x
      Zheng, Y. F., 2020a. Metamorphism in Subduction Zones. Encyclopedia of Geology, 2nd Edition, https://doi.org/10.1016/B978-0-08-102908-4.00020-5
      Zheng, Y. F., 2020b. Exhumation of Ultrahigh-Pressure Metamorphic Terranes. Encyclopedia of Geology, 2nd Edition, https://doi.org/10.1016/B978-0-08-102908-4.00016-3
      陈丹玲, 任云飞, 宫相宽, 等, 2015. 北秦岭松树沟榴辉岩的确定及其地质意义. 岩石学报, 31(7): 1841-1854. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201507003.htm
      陈丹玲, 刘良, 廖小莹, 等, 2019. 北秦岭高压-超高压岩石的时空分布、P-T-t演化及其形成机制. 地球科学, 44(12): 4017-4027. doi: 10.3799/dqkx.2019.256
      高晓英, 2019. 大陆俯冲带大规模的变质流体活动: 来自大别造山带超高压硬玉石英岩的记录. 地球科学, 44(12): 4064-4071. doi: 10.3799/dqkx.2019.242
      宫相宽, 陈丹玲, 任云飞, 等, 2016. 北秦岭含柯石英斜长角闪岩的发现及其地质意义. 科学通报, 61(12): 1365-1381. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201612013.htm
      胡能高, 赵东林, 徐柏青, 等, 1994. 北秦岭含柯石英榴辉岩的发现及其意义. 科学通报, (21): 2013. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199421027.htm
      李晔, 周汉文, 钟增球, 等, 2012. 北秦岭早古生代两期变质作用: 来自松树沟基性岩岩石学及锆石U-Pb年代学的记录. 地球科学, 37: 111-124. doi: 10.3799/dqkx.2012.S1.011
      刘良, 周鼎武, 董云鹏, 等, 1995. 东秦岭松树沟高压变质基性岩石及其退变质作用的PTt演化轨迹. 岩石学报, (2): 127-136. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199502002.htm
      刘良, 廖小莹, 张成龙, 等, 2013. 北秦岭高压-超高压岩石的多期变质时代及其地质意义. 岩石学报, 29(5): 1634-1656页. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201305015.htm
      刘军锋, 孙卫东, 孙勇, 等, 2008. 东秦岭松树沟超镁铁质岩体地球化学和铂族元素特征: 对成因的指示. 地质论评, 54: 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200801008.htm
      罗芬红, 陈丹玲, 宫相宽, 等, 2018. 北秦岭超高压地体折返过程中的多期次部分熔融. 岩石学报, 34(12), 3671-3689. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812015.htm
      钱加慧, 杨秀清, 刘良, 等, 2013. 北秦岭松树沟榴闪岩锆石U-Pb定年、矿物包裹体和Lu-Hf同位素特征及其地质意义. 岩石学报, 29(09): 3087-3098. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309011.htm
      吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, (16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      夏琼霞, 郑永飞, 2011. 高压-超高压变质岩石中石榴石的环带和成因. 岩石学报, 27(2): 433-450. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201102007.htm
      夏琼霞, 周李岗, 郑永飞, 2013. 大陆俯冲带超高压变质岩石中石榴石的环带和多阶段生长. 科学通报, 58(22): 2138-2144. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201322004.htm
      夏琼霞, 2019. 高压-超高压变质岩石中不同成因的石榴石. 地球科学, 44(12): 4042-4049. doi: 10.3799/dqkx.2019.235
      向华, 钟增球, 李晔, 等, 2014. 北秦岭造山带早古生代多期次变质与深熔作用: 锆石U-Pb年代学证据. 岩石学报, 30(8): 2421-2434. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202408009.htm
      杨经绥, 许志琴, 裴先治, 等, 2002. 秦岭发现金刚石: 横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别. 地质学报, 4: 484-495. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200204010.htm
      张国伟, 张宗清, 董云鹏, 1995. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义. 岩石学报, 11(2): 101-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199502000.htm
      张国伟, 张本仁, 袁学诚, 等, 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社.
      张宏福, 于红, 2019. 造山带橄榄岩石学与构造过程: 以松树沟橄榄岩为例. 地球科学, 44(4): 1057-1066. doi: 10.3799/dqkx.2019.952
      张建新, 孟繁聪, 戚学祥, 2002. 柴达木盆地北缘大柴旦和锡铁山榴辉岩中石榴子石环带对比及地质意义. 地质通报, (3): 123-129. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200203002.htm
      张建新, 于胜尧, 孟繁聪, 2011. 北秦岭造山带的早古生代多期变质作用. 岩石学报, 27(4): 1179-1190. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201408022.htm
      张宗清, 刘敦一, 付国民, 1994. 北秦岭变质地层同位素年代研究. 北京: 地质出版社, 211-215.
    • dqkxzx-49-8-2714-附件.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (733) PDF downloads(156) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return