• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 8
    Aug.  2021
    Turn off MathJax
    Article Contents
    Xu Yawen, Li Chengdong, Zhao Ligang, Sun Xuanye, Xu Teng, Teng Xueming, 2021. Bimodal Volcanic Rocks of Dingyuan Formation on the Northern Margin of Dabie Belt: A Witness of Late Neoproterozoic Rifting Event. Earth Science, 46(8): 2732-2750. doi: 10.3799/dqkx.2020.322
    Citation: Xu Yawen, Li Chengdong, Zhao Ligang, Sun Xuanye, Xu Teng, Teng Xueming, 2021. Bimodal Volcanic Rocks of Dingyuan Formation on the Northern Margin of Dabie Belt: A Witness of Late Neoproterozoic Rifting Event. Earth Science, 46(8): 2732-2750. doi: 10.3799/dqkx.2020.322

    Bimodal Volcanic Rocks of Dingyuan Formation on the Northern Margin of Dabie Belt: A Witness of Late Neoproterozoic Rifting Event

    doi: 10.3799/dqkx.2020.322
    • Received Date: 2020-05-21
      Available Online: 2021-09-14
    • Publish Date: 2021-08-15
    • In order to understand the tectonic properties of the northern margin of Dabie belt,the stratum,age and geochemical characteristics of Dingyuan Formation were investigated and studied. Field survey shows that the Dingyuan Formation is composed of a set of metavolcanic rocks,mica schist,mica quartz schist,leptite and slate,etc.. The metavolcanics are mainly metabasalts and meta-rhyolitic volcanics which constitute typical bimodal volcanic formation. In addition,it contains Early Paleozoic tectono-stratigraphic unit. The LA-ICP-MS U-Pb dating of zircon from acidic volcanic rocks yields the ages of 725.7±1.4 Ma and 736.6±5.4 Ma,indicating the Neoproterozoic rather than the Early Paleozoic ages. The metabasalts are divided into two types: low Ti(TiO2=1.19%) and high Ti(TiO2=3.11% on average). The total amount of rare earth elements of low Ti basalts is lower than N-MORB type and the magma came from the depleted mantle source area. The high Ti basalt can be further divided into two types. One type is rich in Nb and Ta,and the ratio of incompatible elements is close to that of continental rift basalt. The other type of loss-Nb,Ta,Th,U and other elements,the magma probably came from the modified mantle by the lower crust or altered oceanic crust. Its Th/Ta is 1.6,which is close to the Th/Ta ratio of the continental rift basalt. In a word,the geochemical characteristics of the metamorphic basalts are very different,which reflects the heterogeneity of the source area of the mantle. Large ionic lithophile elements Rb,Ba,Th,U and K are enriched in acidic volcanic rocks,depletion Nb,Ta,P,Ti and other elements,the value of εHf(t) is -3.0 to -10 by zircon Hf isotope analysis,two-stage Hf mode age (TDM2(Hf)) is 1 630-2 258 Ma,it reveals that it came from a partial melting of the ancient crust. The Neoproterozoic bimodal volcanic rocks of the Dingyuan Formation was formed in the continental rift environment,not in the background of island arc structure. The bimodal volcanic rocks and the widely distributed contemporaneous magmatic rocks reveal an important continental margin rifting-magma event in the northern margin of the Yangtze Block during the Neoproterozoic period (800-611 Ma),which is ground surface response of the deep dynamics to the breakup of supercontinent Rodinia.

       

    • loading
    • Bacon, C. R., Druitt, T. H., 1988. Compositional Evolution of the Zoned Calcalkaline Magma Chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98(2): 224-256. https://doi.org/10.1007/bf00402114
      Callegaro, S., Marzoli, A., Bertrand, H., et al., 2013. Upper and Lower Crust Recycling in the Source of CAMP Basaltic Dykes from Southeastern North America. Earth and Planetary Science Letters, 376: 186-199. https://doi.org/10.1016/j.epsl.2013.06.023
      Chen, J.F., Dong, S.W., Deng, Y.Y., et al., 1993. Interpretation of K-Ar Ages of the Dabie Orogen-A Differential Uplifted Block. Geological Review, 39(1): 17-22 (in Chinese with English abstract). http://www.researchgate.net/publication/311733290_Interpretation_of_K-Ar_ages_of_the_Dabie_orogen_-_A_differential_uplifted_block
      Chen, L., Ma, C.Q., She, Z.B., et al., 2006. Liulin Gabbro in the Beihuaiyang Tectonic Belt of the Dabie Orogen: A Witness of the Late Neoproterozoic Rifting Event. Earth Science, 31(4): 578-584 (in Chinese with English abstract). http://www.researchgate.net/publication/283167567_Liulin_gabbro_in_the_Beihuaiyang_tectonic_belt_of_the_Dabie_orogen_A_witness_of_the_late_neoproterozoic_rifting_event
      Chen, T.L., Wu, B., Weng, M.Z., 2013. Material Association of Tiantaishan Formation of Hong'an Group and Zircon U-Pb Dating. Resources Environment & Engineering, 27(3): 231-237 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBDK201303000.htm
      Christiansen, R. L., 1984. Yellowstone Magmatic Evolution: Its Bearing on Understanding Large-Volume Explosive Volcanism. In: Jr. Boyd, F.R., ed., Explosive Volcanism: Inception, Evolution and Hazards. National Academy Press, Washington, DC.
      Coulon, C., Maluski, H., Bollinger, C., et al., 1986. Mesozoic and Cenozoic Volcanic Rocks from Central and Southern Tibet: 39Ar-40Ar Dating, Petrological Characteristics and Geodynamical Significance. Earth and Planetary Science Letters, 79(3-4): 281-302. https://doi.org/10.1016/0012-821x(86)90186-x
      Dong, Y. P., Liu, X. M., Santosh, M., et al., 2012. Neoproterozoic Accretionary Tectonics along the Northwestern Margin of the Yangtze Block, China: Constraints from Zircon U-Pb Geochronology and Geochemistry. Precambrian Research, 196-197: 247-274. https://doi.org/10.1016/j.precamres.2011.12.007
      Garland, F., Hawkesworth, C. J., Mantovani, M. S. M., 1995. Description and Petrogenesis of the Parana Rzhyolites, Southern Brazil. Journal of Petrology, 36(5): 1193-1227. https://doi.org/10.1093/petrology/36.5.1193
      Geng, J.Z., Li, H.K., Zhang, J., et al., 2011. Zircon Hf Isotope Analysis by Means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508-1513 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201110005.htm
      Hart, S. R., Hauri, E. H., Oschmann, L. A., et al., 1992. Mantle Plumes and Entrainment: Isotopic Evidence. Science, 256(5056): 517-520. https://doi.org/10.1126/science.256.5056.517
      He, Q., Zheng, Y.F., 2019. High-Temperature/Low-Pressure Metamorphism in a Continental Rift in the Northern Margin of the South China Block. Earth Science, 44(12): 4186-4194 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912030.htm
      Hochstaedter, A. G., Gill, J. B., Kusakabe, M., et al., 1990. Volcanism in the Sumisu Rift: I. Major Element, Volatile, and Stable Isotope Geochemistry. Earth and Planetary Science Letters, 100(1-3): 179-194. https://doi.org/10.1016/0012-821x(90)90184-y
      Jiang, L. L., Wolfgang, S., Chen, F. K., et al., 2005. U-Pb Zircon Ages for the Luzhenguan Complex in Northern Part of the Eastern Dabie Orogen. Scientia Sinica Terrae, 35(5): 411-419 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG200509003.htm
      Li, H.K., Lu, S.N., Chen, Z.H., et al., 2003. Zircon U-Pb Geochronology of Rift-Type Volcanic Rocks of the Yaolinghe Group in the South Qinling Orogen. Geological Bulletin of China, 22(10): 775-781 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200310004.htm
      Li, S. G., Huang, F., Nie, Y. H., et al., 2001. Geochemical and Geochronological Constraints on the Suture Location between the North and South China Blocks in the Dabie Orogen, Central China. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9-10): 655-672. https://doi.org/10.1016/s1464-1895(01)00117-x
      Li, X. H., Li, W. X., Li, Q. L., et al., 2010. Petrogenesis and Tectonic Significance of the~850 Ma Gangbian Alkaline Complex in South China: Evidence from In Situ Zircon U-Pb Dating, Hf-O Isotopes and Whole-Rock Geochemistry. Lithos, 114(1-2): 1-15. https://doi.org/10.1016/j.lithos.2009.07.011
      Liu, Y. C., Li, S. G., Gu, X. F., et al., 2006. Zircon SHRIMP U-Pb Dating for Olivine Gabbro at Wangmuguan in the Beihuaiyang Zone and Its Geological Significance. Chinese Science Bulletin, 51(18): 2175-2180 (in Chinese). doi: 10.1360/csb2006-51-18-2175
      Liu, Y. C., Liu, L. X., Gu, X. F., et al., 2010. Occurrence of Neoproterozoic Low-Grade Metagranite in the Western Beihuaiyang Zone, the Dabie Orogen. Chinese Science Bulletin, 55(24): 2391-2399 (in Chinese). doi: 10.1360/csb2010-55-24-2391
      Liu, Y. C., Liu, L. X., Li, Y., et al., 2017. Zircon U-Pb Geochronology and Petrogenesis of Metabasites from the Western Beihuaiyang Zone in the Hong'an Orogen, Central China: Implications for Detachment within Subducting Continental Crust at Shallow Depths. Journal of Asian Earth Sciences, 145: 74-90. https://doi.org/10.1016/j.jseaes.2016.12.021
      Liu, Y.C., Yang, Y., Jiang, W.J., et al., 2019. Diverse Partial Melting during Continental Rifting, Subduction-Exhumation and Mountain-Root Collapse in the Dabie Orogen, Central China. Earth Science, 44(12): 4195-4202 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912031.htm
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      MacDonald, R., Rogers, N. W., Fitton, J. G., et al., 2001. Plume-Lithosphere Interactions in the Generation of the Basalts of the Kenya Rift, East Africa. Journal of Petrology, 42(5): 877-900. https://doi.org/10.1093/petrology/42.5.877
      Pin, C., Paquette, J. L., 1997. A Mantle-Derived Bimodal Suite in the Hercynian Belt: Nd Isotope and Trace Element Evidence for a Subduction-Related Rift Origin of the Late Devonian Brévenne Metavolcanics, Massif Central (France). Contributions to Mineralogy and Petrology, 129(2-3): 222-238. https://doi.org/10.1007/s004100050334
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, W. D., Williams, I. S., Li, S. G., 2002. Carboniferous and Triassic Eclogites in the Western Dabie Mountains, East-Central China: Evidence for Protracted Convergence of the North and South China Blocks. Journal of Metamorphic Geology, 20(9): 873-886. https://doi.org/10.1046/j.1525-1314.2002.00418.x
      Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 122(1-4): 141-158. https://doi.org/10.1016/s0301-9268(02)00209-7
      Wang, J.R., Pan, Z.J., Zhang, Q., et al., 2016. Intra-Continental Basalt Data Mining: The Diversity of Their Constituents and the Performance in Basalt Discrimination Diagrams. Acta Petrologica Sinica, 32(7): 1919-1933 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201607001.htm
      Wang, X. C., Li, Z. X., Li, X. H., et al., 2011. Geochemical and Hf-Nd Isotope Data of Nanhua Rift Sedimentary and Volcaniclastic Rocks Indicate a Neoproterozoic Continental Flood Basalt Provenance. Lithos, 127(3-4): 427-440. https://doi.org/10.1016/j.lithos.2011.09.020
      Weaver, B. L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters, 104(2-4): 381-397. https://doi.org/10.1016/0012-821x(91)90217-6
      Wu, X.Y., Liu, X.Y., Zhou, Z.M., et al., 2020. Overview on Geological, Geochemical Features and Genesis of the Granitic Pegmatites in Gatumba Area, Rwanda. Geological Survey and Research, 43(1): 42-54 (in Chinese with English abstract).
      Wu, Y. B., Zheng, Y. F., Tang, J., et al., 2007. Zircon U-Pb Dating of Water-Rock Interaction during Neoproterozoic Rift Magmatism in South China. Chemical Geology, 246(1-2): 65-86. https://doi.org/10.1016/j.chemgeo.2007.09.004
      Xia, L.Q., Xia, Z.C., Li, X.M., et al., 2008. Petrogenesis of the Yaolinghe Group, Yunxi Group, Wudangshan Group Volcanic Rocks and Basic Dyke Swarms from Eastern Part of the South Qinling Mountains. Northwestern Geology, 41(3): 1-29 (in Chinese with English abstract). http://www.researchgate.net/publication/279762845_Petrogenesis_of_the_Yaolinghe_Group_Yunxi_Group_Wudangshan_Group_volcanic_rocks_and_basic_dyke_swarms_from_eastern_part_of_the_South_Qinling_Mountains
      Xue, H.M., Ma, F., Song, Y.Q., 2011. Geochemistry and SHRIMP Zircon U-Pb Data of Neoproterozoic Meta-Magmatic Rocks in the Suizhou-Zaoyang Area, Northern Margin of the Yangtze Craton, Central China. Acta Petrologica Sinica, 27(4): 1116-1130 (in Chinese with English abstract). http://www.researchgate.net/publication/285943391_Geochemistry_and_SHRIMP_zircon_U-Pb_data_of_Neoproterozoic_meta-magmatic_rocks_in_the_Suizhou-Zaoyang_area_northern_margin_of_the_Yangtze_Craton_Central_China
      Yang, J., Wang, J.R., Zhang, Q., et al., 2016. Global IAB Data Excavation: The Performance in Basalt Discrimination Diagrams and Preliminary Interpretation. Geological Bulletin of China, 35(12): 1937-1949 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201612001.htm
      Zhang, J., Zhang, H. F., Li, L., 2018. Neoproterozoic Tectonic Transition in the South Qinling Belt: New Constraints from Geochemistry and Zircon U-Pb-Hf Isotopes of Diorites from the Douling Complex. Precambrian Research, 306: 112-128. https://doi.org/10.1016/j.precamres.2017.12.043
      Zhang, Y.Q., 2012. Study on the Laser-Raman Spectroscopy Analysis and CL Images: Implications for Metamictized Zircons and U-Pb Ages. Geological Survey and Research, 35(3): 224-228, 235 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ201203013.htm
      Zheng, Y. F., Gong, B., Zhao, Z. F., et al., 2008. Zircon U-Pb Age and O Isotope Evidence for Neoproterozoic Low-18O Magmatism during Supercontinental Rifting in South China: Implications for the Snowball Earth Event. American Journal of Science, 308(4): 484-516. https://doi.org/10.2475/04.2008.04
      Zhu, J., Peng, S.G., Peng, L.H., et al., 2019. Geochronology of Bimodal Volcanic Rocks from Dingyuan Formation in Western Dabie Orogen, Central China: Implications for Extension during Breakup of Rodinia. Earth Science, 44(2): 355-365 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201902001.htm
      Zhu, X. Y., Chen, F. K., Nie, H., et al., 2014. Neoproterozoic Tectonic Evolution of South Qinling, China: Evidence from Zircon Ages and Geochemistry of the Yaolinghe Volcanic Rocks. Precambrian Research, 245: 115-130. https://doi.org/10.1016/j.precamres.2014.02.005
      陈江峰, 董树文, 邓衍尧, 等, 1993. 大别造山带钾氩年龄的解释——差异上升的地块. 地质论评, 39(1): 17-22. doi: 10.3321/j.issn:0371-5736.1993.01.003
      陈玲, 马昌前, 佘振兵, 等, 2006. 大别山北淮阳构造带柳林辉长岩: 新元古代晚期裂解事件的记录. 地球科学, 31(4): 578-584. doi: 10.3321/j.issn:1000-2383.2006.04.018
      陈铁龙, 吴波, 翁茂芝, 2013. 湖北红安群天台山组物质组合及锆石U-Pb定年. 资源环境与工程, 27(3): 231-237. doi: 10.3969/j.issn.1671-1211.2013.03.001
      耿建珍, 李怀坤, 张健, 等, 2011. 锆石Hf同位素组成的LA-MC-ICP-MS测定. 地质通报, 30(10): 1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004
      贺强, 郑永飞, 2019. 华南陆块北缘大陆裂断带高温低压变质作用. 地球科学, 44(12): 4186-4194. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912030.htm
      江来利, Wolfgang, S., 陈福坤, 等, 2005. 大别造山带北部卢镇关杂岩的U-Pb锆石年龄. 中国科学: 地球科学, 35(5): 411-419. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200505003.htm
      李怀坤, 陆松年, 陈志宏, 等, 2003. 南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学. 地质通报, 22(10): 775-781. doi: 10.3969/j.issn.1671-2552.2003.10.005
      刘贻灿, 李曙光, 古晓锋, 等, 2006. 北淮阳王母观橄榄辉长岩锆石SHRIMP U-Pb年龄及其地质意义. 科学通报, 51(18): 2175-2180. doi: 10.3321/j.issn:0023-074X.2006.18.014
      刘贻灿, 刘理湘, 古晓锋, 等, 2010. 大别山北淮阳带西段新元古代浅变质花岗岩的发现及其大地构造意义. 科学通报, 55(24): 2391-2399. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201024006.htm
      刘贻灿, 杨阳, 姜为佳, 等, 2019. 大别造山带在大陆裂解、地壳的俯冲-折返及山根垮塌期间的多期部分熔融作用. 地球科学, 44(12): 4195-4202. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912031.htm
      王金荣, 潘振杰, 张旗, 等, 2016. 大陆板内玄武岩数据挖掘: 成分多样性及在判别图中的表现. 岩石学报, 32(7): 1919-1933. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201607001.htm
      吴兴源, 刘晓阳, 周佐民, 等, 2020. 卢旺达Gatumba地区花岗伟晶岩的地质、地球化学特征及其成因研究综述. 地质调查与研究, 43(1): 42-54. doi: 10.3969/j.issn.1672-4135.2020.01.005
      夏林圻, 夏祖春, 李向民, 等, 2008. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因. 西北地质, 41(3): 1-29. doi: 10.3969/j.issn.1009-6248.2008.03.001
      薛怀民, 马芳, 宋永勤, 2011. 扬子克拉通北缘随(州)-枣(阳)地区新元古代变质岩浆岩的地球化学和SHRIMP锆石U-Pb年代学研究. 岩石学报, 27(4): 1116-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104021.htm
      杨婧, 王金荣, 张旗, 等, 2016. 全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释. 地质通报, 35(12): 1937-1949. doi: 10.3969/j.issn.1671-2552.2016.12.001
      张永清, 2012. 激光拉曼、阴极荧光研究对蜕晶化锆石及其U-Pb年龄解释的指示意义. 地质调查与研究, 35(3): 224-228, 235. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201203013.htm
      朱江, 彭三国, 彭练红, 等, 2019. 扬子陆块北缘西大别地区定远组双峰式火山岩U-Pb年代学及其地质构造意义. 地球科学, 44(2): 355-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201902001.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(4)

      Article views (1426) PDF downloads(91) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return