• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 5
    May  2021
    Turn off MathJax
    Article Contents
    Hu Qiaofan, Feng Zuohai, Mo Jiangping, Fang Ke, Liu Junchen, Cai Yongfeng, Deng Gui'an, Huang Xueqiang, Bai Ling'an, Qin Peng, 2021. Genesis of Chambishi Copper Deposit in Copperbelt Province of Zambia: Evidence from Fluid Inclusions and H-O-S Isotope Geochemisty. Earth Science, 46(5): 1554-1568. doi: 10.3799/dqkx.2020.328
    Citation: Hu Qiaofan, Feng Zuohai, Mo Jiangping, Fang Ke, Liu Junchen, Cai Yongfeng, Deng Gui'an, Huang Xueqiang, Bai Ling'an, Qin Peng, 2021. Genesis of Chambishi Copper Deposit in Copperbelt Province of Zambia: Evidence from Fluid Inclusions and H-O-S Isotope Geochemisty. Earth Science, 46(5): 1554-1568. doi: 10.3799/dqkx.2020.328

    Genesis of Chambishi Copper Deposit in Copperbelt Province of Zambia: Evidence from Fluid Inclusions and H-O-S Isotope Geochemisty

    doi: 10.3799/dqkx.2020.328
    • Received Date: 2020-11-23
    • Publish Date: 2021-05-15
    • Fluid inclusions study and H-O-S isotopic geochemical analysis of ore and vein minerals were carried out in this study in order to reveal the characteristics of ore-forming fluid and material of the Chambishi copper deposit. The results of microscopic measurement of temperature show that the homogenization temperature and salinity of the fluid inclusions from hydrothermal fluid filling deposit mainly range from 100 to 350 ℃ and 11% to 19% NaCleqv, respectively. Analyses of H-O isotopic composition of the hydrothermal fluid filling deposit show that the values of δDV-SMOW and δ18OH2O are -64.0‰ to -52.6‰ and 1.57‰ to 2.97‰, respectively. Analyses of S isotopic composition show that the values of δ34SCDT from hydrothermal fluid filling orebodies and depositional orebodies are 5.5‰ to 12.1‰ and 6.0‰ to 21.0‰, respectively. The above data indicate that the ore-forming fluid of the hydrothermal fluid filling deposit is of medium-low temperature, low-middle salinity and density, and belongs to Cl-Na-Ca-type aqueous solution. The fluid is a mix of mantle and crust-derived magmas. Fluid mixing is the main reason for copper precipitation. Sulfur of the hydrothermal fluid filling deposit is similar to those of mantle-derived sulfur, whereas the sulfur of the depositional ore deposit is mainly sourced from diagenetic sulphide and seawater sulfate. The mechanism of sulfate reduction for both deposits is thermochemical reduction which resulted in the change of sulfur from SO42- to H2S. The mixed sources of ore-forming fluid and material indicate that mineralization of the hydrothermal fluid filling deposit is closely related to the middle Neoproterozoic magmatism, whereas mineralization of the depositional ore deposit is mainly related to the strong Late Neoproterozoic orogenesis and regional metamorphism.

       

    • loading
    • Armstrong, R. A., Master, S., Robb, L. J., 2005. Geochronology of the Nchanga Granite, and Constraints on the Maximum Age of the Katanga Supergroup, Zambian Copperbelt. Journal of African Earth Sciences, 42: 32-40. doi: 10.1016/j.jafrearsci.2005.08.012
      Armstrong, R. A., Robb, L. J., Masters, S., et al., 1999. New U-Pb Age Constraints on the Katangan Sequence, Central African Copperbelt. Journal of African Earth Sciences, 28 (4A): 6-7.
      Bodnar, R. J., 1983. A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and PVTX Properties of Inclusion Fluids. Economic Geology, 78: 535-542. doi: 10.2113/gsecongeo.78.3.535
      Cailteux, J., Binda, P. L., Katekesha, W. M., et al., 1994. Lithostratigraphical Correlation of the Neoproterozoic Roan Supergroup from Shaba (Zaire) and Zambia, in the Central African Copper-Cobalt Metallogenic Province. Journal of African Earth Sciences, 19: 265-278. doi: 10.1016/0899-5362(94)90014-0
      Chaussidon, M., Albarède, F., Sheppard, S. M. F., 1989. Sulphur Isotope Variations in the Mantle from Ion Microprobe Analyses of Micro-Sulphide Inclusions. Earth and Planetary Science Letters, 92(2): 144-156. doi: 10.1016/0012-821X(89)90042-3
      Clayton, R. N., O'Neil, J. R., Mayeda, T. K., 1972. Oxygen Isotope Exchange between Quartz and Water. Journal of Geophysical Research, 77: 3057-3067. doi: 10.1029/JB077i017p03057
      Fang, K., Hu, Q.F., Li, M.J., et al., 2019. Characteristics of Molybdenum Mineralization in the Southeast Orebody of Chambishi Copper Deposit in Copperbelt Province of Zambia. Mineral Resources and Geology, 33(6): 987-994 (in Chinese with English abstract).
      Freeman, P. V., 1988. Description of Mineral Deposits on the Copperbelt. Zambia Consolidated Copper Mines Ltd., Unpublished Company Report, Lukasa, 1095.
      Greyling, L.N., Robb, L.J., Master, S., et al., 2005. The Nature of Early Basinal Fluids in the Zambian Copperbelt: A Case Study from the Chambishi Deposit. Journal of African Earth Sciences, 42(1): 159-172. http://www.sciencedirect.com/science/article/pii/S1464343X05000932
      Guo, W, Lin, X, Hu, S.H., 2020. Advances in LA-ICP-MS Analysis for Individual Fluid Inclusions and Applications. Earth Sicence, 45(4): 1362-1374 (in Chinese with English abstract).
      Hitzman, M., Kirkham, R., Broughton, D., et al., 2005. The Sediment-Hosted Stratiform Copper Ore System. Economic Geology, 100: 609-642.
      Hoefs, J., 1997. Stable Isotope Geochemistry. Springer, Berlin, 1-281.
      Kampunzu, A.B., Cailteux, J., 1999. Tectonic Evolution of the Lufilian Arc (Central Africa Copperbelt) during Neoproterozoic Pan African Orogenesis. Gondwana Research, 2: 401-421. doi: 10.1016/S1342-937X(05)70279-3
      Kampunzu, A. B., Cailteux, J. L. H., Kamona, A. F., et al., 2009. Sediment-Hosted Zn-Pb-Cu Deposits in the Central African Copperbelt. Ore Geology Reviews, 35(3-4): 263-297. doi: 10.1016/j.oregeorev.2009.02.003
      Key, R. M., Liyugu, A. K., Njamu, F. M., 2001. The Western Arm of the Lufilian are in NW Zambia and Its Potential for Copper Mineralization. Journal of Africa Earth Science, 33: 503-528. doi: 10.1016/S0899-5362(01)00098-7
      Li, X.Q., Mao, J.W., Yan, Y.L., et al., 2009. Regional Geology and Characteristics of Ore Deposits in Katangan Copper-Cobalt Belt within Congo (Kinshasa), Central Africa. Mineral Deposits, 28(3): 366-380 (in Chinese with English abstract).
      Liu, B., Duan, G.X., 1987. The Density and Isochoric Formulae for NaCl-H2O Fluid Inclusions (Salinity 25 wt%) and Their Applications. Acta Mineralogica Sinica, 7(4): 345-352 (in Chinese with English abstract).
      Liu, J.C., 2016. Geological Characteristics and Genesis Discussion of Chambishi Copper Deposits in Copperbelt Province, Zambia (Dissertaiton). Guilin University of Technology, Guilin (in Chinese with English abstract).
      Lu, H.Z., Fan, H.R., Ni, P., et al., 2004. Fluid Inclusion. Science Press, Beijing, 1-487 (in Chinese).
      Machel, H.G., 2001. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings: Old and New Insights. Sedimentary Geology, 140: 143-175. doi: 10.1016/S0037-0738(00)00176-7
      Meshoulam, A., Ellis, G.S., Said Ahmad, et al., 2016. Study of Thermochemical Sulfate Reduction Mechanism Using Compound Specific Sulfur Isotope Analysis. Geochimica et Cosmochimica Acta, 188: 73-92. doi: 10.1016/j.gca.2016.05.026
      Mo, X.X., 2019. Magmatism and Deep Geological Process. Earth Sicence, 44(5): 1487-1493 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905007.htm
      Ohmoto, H., Rye, R. O., 1979. Isotopes of Sulfur and Carbon. In: Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons, New York, 509-567.
      Polya, D. A., Foxford, K. A., Stuart, F., et al. 2000. Evolution and Paragenetic Context of Low Delta D Hydrothermal Fluids from the Panasqueira W-Sn Deposit, Portugal: New Evidence from Microthermometric, Stable Isotope, Noble Gas and Halogen Analyses of Primary Fluid Inclusions. Geochimica et Cosmochimica Acta, 64: 3357-3371. doi: 10.1016/S0016-7037(00)00459-2
      Qin, P., Hao, B., Fang, K., et al., 2019. The Geological Significance for Re-Os Isotopic Dating of Cu-Mo Ore in the Lower Footwall of Chambishi Copper Deposit within Copperbelt Province of Zambia. Mineral Resources and Geology, 33(3): 377-384 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCYD201903002.htm
      Rainaud, C., Master, S., Armstrong, R.A., et al., 2005. Geochronology and Nature of the Palaeoproterozoic Basement in the Central African Copperbelt (Zambia and the Democratic Republic of Congo), with Regional Implications. Journal of African Earth Sciences, 42: 1-31. http://www.sciencedirect.com/science/article/pii/S1464343X0500097X
      Ren, J.P., Wang, J., Zhang, D.H., et al., 2018. Reactivation of Lufilian Arc in Zambia: Zircon and Apatite Fission Track Chronology. Earth Sicence, 43(6): 1850-1860 (in Chinese with English abstract).
      Roedder, E., 1976. Fluid Inclusion Evidence on the Genesis of Ores in Sedimentary and Volcanic Rocks. Hand Book of Stratabound and Stratiform Ore Deposits, 3(1): 67-110. http://www.sciencedirect.com/science/article/pii/B9780444414021500072
      Rye, R. O., Ohmoto, H., 1974. Sulfur and Carbon Isotopes and Ore Genesis: A Review. Economic Geology, 69(6): 826-842. doi: 10.2113/gsecongeo.69.6.826
      Selley, D., Broughton, D., Scott, R., et al., 2005. A New Look at the Geology of the Zambian Copperbelt. In: Economic Geology 100th Anniversary Volume. Society of Economic Geology, Littleton, 965-1000.
      Taylor, H. P., 1974. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition. Economic Geology, 69(6): 843-883. doi: 10.2113/gsecongeo.69.6.843
      Truche, L., Bazarkina, E.F., Barré, G., et al., 2014. The Role of S3- Ion in Thermochemical Sulphate Reduction: Geological and Geochemical Implications. Earth and Planetary Science Letters, 396: 190-200. doi: 10.1016/j.epsl.2014.04.018
      Wagner, T., Mlynarczyk, M. S. J., Williams-Jones, A. E., et al., 2009. Stable Isotope Constraints on Ore Formation at the San Rafael Tin-Copper Deposit, Southeast Peru. Economic Geology, 104(2): 223-248. doi: 10.2113/gsecongeo.104.2.223
      Wei, Y.B., Liu, X.C., 2012. Geological Characteristics and Prospecting Potential of Kalulushi Copper Deposits in Copperbelt Province, Zambia. Journal of East China Institute of Technology (Natural Science Edition), 35(4): 364-370 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDDZ201204012.htm
      Yan, P., Liu, W.C., 2006. Mineralization Characteristics and Genesis of Chambishi Copper Deposit in Zambia. China Mine Engineering, 35(1): 1-4, 8 (in Chinese with English abstract).
      Yuan, S.D., Chou, I.M., Burruss, R.C., et al., 2013. Disproportionation and Thermochemical Sulfate Reduction Reactions in S-H2O-CH4 and S-D2O-CH4 Systems from 200 to 340 ℃ at Elevated Pressures. Geochimica et Cosmochimica Acta, 118: 263-275. doi: 10.1016/j.gca.2013.05.021
      Zhang, D.H., 1992. Aqueous Phase Composition Characteristics of Mineral Fluid Inclusion and Its Signification in Ore Genesis. Earth Science, 12(6): 49-55 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=721142
      Zhao, X.G., 2010. Geological Characteristics of Chambishi Copper Deposit in Zambia. Geology and Exploration, 46(1): 183-190 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201001027.htm
      Zheng, Y.F., Xu, B.L., Zhou, G.T., 2000. Geochemistry of Stable Isotopes of Minerals. Earth Science Frontiers, 7(2): 299-320 (in Chinese with English abstract).
      Zhu, H.B., Zhang, D.H., Xiao, B., et al., 2016. Geological Characteristics and Genesis of Chambishi Copper Deposit in Copperbelt of Zambia. Mineral Resources and Geology, 30(1): 19-23, 28 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=KCYD201601003&dbcode=CJFD&year=2016&dflag=pdfdown
      方科, 胡乔帆, 李明君, 等, 2019. 赞比亚铜带省谦比希铜矿床东南矿区钼矿化特征. 矿产与地质, 33(6): 987-994. doi: 10.3969/j.issn.1001-5663.2019.06.007
      郭伟, 林贤, 胡圣虹, 2020. 单个流体包裹体LA-ICP-MS分析及应用进展. 地球科学, 45(4): 1362-1374. doi: 10.3799/dqkx.2019.199
      李向前, 毛景文, 闫艳玲, 等, 2009. 中非刚果(金)加丹加铜钴矿带主要矿化类型及特征. 矿床地质, 28(3): 366-380. doi: 10.3969/j.issn.0258-7106.2009.03.012
      刘斌, 段光贤, 1987. NaCl-H2O溶液包裹体的密度式和等容式及其应用. 矿物学报, 7(4): 345-352. doi: 10.3321/j.issn:1000-4734.1987.04.010
      刘俊辰, 2016. 赞比亚铜带省谦比希铜矿地质特征和成因探讨(硕士学位论文). 桂林: 桂林理工大学.
      卢焕章, 范宏瑞, 倪培, 等, 2004. 流体包裹体. 北京: 科学出版社, 1-487.
      莫宣学, 2019. 岩浆作用与地球深部过程. 地球科学, 44(5): 1487-1493. doi: 10.3799/dqkx.2019.972
      覃鹏, 郝波, 方科, 等, 2019. 赞比亚铜带省谦比希铜矿床下盘铜钼矿化Re-Os年龄测定及地质意义. 矿产与地质, 33(3): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201903002.htm
      任军平, 王杰, 张东红, 等, 2018. 赞比亚卢弗里安弧构造带再活化的证据: 锆石和磷灰石裂变径迹年代学. 地球科学, 43(6): 1850-1860. doi: 10.3799/dqkx.2018.610
      魏元泵, 刘湘成, 2012. 赞比亚铜带省卡卢鲁西铜矿区地质特征及找矿前景探讨. 东华理工大学学报(自然科学版), 35(4): 364-370. doi: 10.3969/j.issn.1674-3504.2012.04.010
      颜平, 刘文成, 2006. 赞比亚谦比西铜矿矿床特征及成因. 中国矿山工程, 35(1): 1-4, 8. doi: 10.3969/j.issn.1672-609X.2006.01.002
      张德会, 1992. 矿物流体包裹体液相成分特征及其矿床成因意义. 地球科学, 17(6): 677-688. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199206006.htm
      赵兴国, 2010. 赞比亚谦比希铜矿床地质特征. 地质与勘探, 46(1): 183-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201001027.htm
      郑永飞, 徐宝龙, 周根陶, 2000. 矿物稳定同位素地球化学研究. 地学前缘, 7(2): 299-320. doi: 10.3321/j.issn:1005-2321.2000.02.001
      朱海宾, 张东红, 肖波, 等, 2016. 赞比亚铜带省谦比希铜矿地质及矿床成因研究. 矿产与地质, 30(1): 19-23, 28. doi: 10.3969/j.issn.1001-5663.2016.01.004
    • dqkxzx-46-5-1554-附表1.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(3)

      Article views (2121) PDF downloads(107) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return