• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 3
    Mar.  2021
    Turn off MathJax
    Article Contents
    Shao Jia, Xu Hehua, Shen Yongqiang, Shi Xiaobin, Wang Xiaofang, 2021. The Effect of Water Content in the Upper Mantle on the Oceanic Crustal Thickness during Seafloor Spreading: Numerical Modeling. Earth Science, 46(3): 826-839. doi: 10.3799/dqkx.2020.336
    Citation: Shao Jia, Xu Hehua, Shen Yongqiang, Shi Xiaobin, Wang Xiaofang, 2021. The Effect of Water Content in the Upper Mantle on the Oceanic Crustal Thickness during Seafloor Spreading: Numerical Modeling. Earth Science, 46(3): 826-839. doi: 10.3799/dqkx.2020.336

    The Effect of Water Content in the Upper Mantle on the Oceanic Crustal Thickness during Seafloor Spreading: Numerical Modeling

    doi: 10.3799/dqkx.2020.336
    • Received Date: 2020-08-30
    • Publish Date: 2021-03-01
    • Different contents of water in the mantle have significant effects on the formation of oceanic crust. However, how the homogeneous and local hydrous mantle with different water contents will affect the thickness of oceanic crust are also not clear. Thus we conduct numerical simulations to represent the process of formation. Results show that, in the homogeneous hydrous models, the higher the water content in the upper mantle is, the smaller the maximum melt fraction, the deeper the initiation melting and the bigger melting area will be, finally leading to larger melt volume and the thicker oceanic crust. And in the local hydrous models, the melt of local hydrous mantle can also increase the thickness of oceanic crust, however, the initial time of the effect will depend on its water content. Combining with the characteristics of oceanic crust of the South China Sea, we suggest that the water content in the mantle source during the opening of South China Sea is heterogeneous.The oceanic crustal thickness in eastern sub-basin is 1 km thicker than that of the southwestern sub-basin, possibly because the overall water content of the former is higher than the latter (about 50×10-6, according to our model). And carbonated silicate melts in the basalt of South China Sea may be carried out from deep by the melt which the local hydrous mantle produce in the deep. Moreover, the oceanic crustal thickness does not change greatly with time, which may be due to the volume of the local hydrous mantle is small or the volume is large but its water content is not significantly higher than that in the background.

       

    • loading
    • Ao, W., Zhao, M. H., Qiu, X. L., et al., 2012. Crustal Structure of the Northwest Sub-Basin of the South China Sea and Its Tectonic Implication. Earth Science, 37(4): 779-790 (in Chinese with English abstract). http://www.researchgate.net/publication/286203459_Crustal_structure_of_the_Northwest_Sub-Basin_of_the_South_China_Sea_and_its_tectonic_implication
      Asimow, P. D., Langmuir, C. H., 2003. The Importance of Water to Oceanic Mantle Melting Regimes. Nature, 421(6925): 815-820. https://doi.org/10.1038/nature01429
      Bell, D. R., Rossman, G. R., 1992. Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals. Science, 255(5050): 1391-1397. https://doi.org/10.1126/science.255.5050.1391
      Brunelli, D., Cipriani, A., Bonatti, E., 2018. Thermal Effects of Pyroxenites on Mantle Melting below Mid-Ocean Ridges. Nature Geoscience, 11(7): 520-525. https://doi.org/10.1038/s41561-018-0139-z
      Chen, Y. J., 1992. Oceanic Crustal Thickness Versus Spreading Rate. Geophysical Research Letters, 19(8): 753-756. https://doi.org/10.1029/92gl00161
      Christeson, G. L., Goff, J. A., Reece, R. S., 2019. Synthesis of Oceanic Crustal Structure from Two-Dimensional Seismic Profiles. Reviews of Geophysics, 57(2): 504-529. https://doi.org/10.1029/2019rg000641
      Ding, W. W., Sun, Z., Dadd, K., et al., 2018. Structures within the Oceanic Crust of the Central South China Sea Basin and Their Implications for Oceanic Accretionary Processes. Earth and Planetary Science Letters, 488: 115-125. https://doi.org/10.1016/j.epsl.2018.02.011
      Gerya, T., 2019. Design of 2D Numerical Geodynamic Models. Introduction to Numerical Geodynamic Modelling. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511809101.018
      Grove, T. L., Till, C. B., Krawczynski, M. J., 2012. The Role of H2O in Subduction Zone Magmatism. Annual Review of Earth and Planetary Sciences, 40(1): 413-439. https://doi.org/10.1146/annurev-earth-042711-105310
      Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/s1367-9120(01)00069-4
      He, E. Y., Zhao, M. H., Qiu, X. L., et al., 2016. Crustal Structure across the Post-Spreading Magmatic Ridge of the East Sub-Basin in the South China Sea: Tectonic Significance. Journal of Asian Earth Sciences, 121: 139-152. https://doi.org/10.1016/j.jseaes.2016.03.003
      Hirschmann, M. M., Tenner, T., Aubaud, C., et al., 2009. Dehydration Melting of Nominally Anhydrous Mantle: The Primacy of Partitioning. Physics of the Earth and Planetary Interiors, 176(1-2): 54-68. https://doi.org/10.1016/j.pepi.2009.04.001
      Hirth, G., Kohlstedt, D. L., 1996. Water in the Oceanic Upper Mantle: Implications for Rheology, Melt Extraction and the Evolution of the Lithosphere. Earth and Planetary Science Letters, 144(1-2): 93-108. https://doi.org/10.1016/0012-821x(96)00154-9
      Katz, R. F., Spiegelman, M., Langmuir, C. H., 2003. A New Parameterization of Hydrous Mantle Melting. Geochemistry, Geophysics, Geosystems, 4(9): 1073. https://doi.org/10.1029/2002gc000433
      Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567
      Li, F. C., Sun, Z., Pang, X., et al., 2019. Low-Viscosity Crustal Layer Controls the Crustal Architecture and Thermal Distribution at Hyperextended Margins: Modeling Insight and Application to the Northern South China Sea Margin. Geochemistry, Geophysics, Geosystems, 20(7): 3248-3267. https://doi.org/10.1029/2019gc008200
      Li, Z. H., Xu, Z. Q., 2015. Dynamics of Along-Strike Transition between Oceanic Subduction and Continental Collision: Effects of Fluid-Melt Activity. Acta Petrologica Sinica, 31(12): 3524-3530 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201512002.htm
      Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179. https://doi.org/10.1130/g23193a.1
      Liao, J., Wang, Q., Gerya, T., et al., 2017. Modeling Craton Destruction by Hydration-Induced Weakening of the Upper Mantle. Journal of Geophysical Research: Solid Earth, 122(9): 7449-7466. https://doi.org/10.1002/2017jb014157
      Lü, C. C., Hao, T. Y., Qiu, X. L., et al., 2011. A Study on the Deep Structure of the Northern Part of Southwest Sub-Basin from Ocean Bottom Seismic Data, South China Sea. Chinese Journal of Geophysics, 54(12): 3129-3138 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011AGUFMOS43C1547L
      Morgan, J. P., Chen, Y. J., 1993. The Genesis of Oceanic Crust: Magma Injection, Hydrothermal Circulation, and Crustal Flow. Journal of Geophysical Research: Solid Earth, 98(B4): 6283-6297. https://doi.org/10.1029/92jb02650
      Nichols, A. R. L., Carroll, M. R., Höskuldsson, 2002. Is the Iceland Hot Spot also Wet? Evidence from the Water Contents of Undegassed Submarine and Subglacial Pillow Basalts. Earth and Planetary Science Letters, 202(1): 77-87. https://doi.org/10.1016/s0012-821x(02)00758-6
      Nikolaeva, K., Gerya, T. V., Connolly, J. A. D., 2008. Numerical Modelling of Crustal Growth in Intraoceanic Volcanic Arcs. Physics of the Earth and Planetary Interiors, 171(1-4): 336-356. https://doi.org/10.1016/j.pepi.2008.06.026
      Niu, Y. L., Bideau, D., Hékinian, R., et al., 2001. Mantle Compositional Control on the Extent of Mantle Melting, Crust Production, Gravity Anomaly, Ridge Morphology, and Ridge Segmentation: A Case Study at the Mid-Atlantic Ridge 33-35°N. Earth and Planetary Science Letters, 186(3-4): 383-399. https://doi.org/10.1016/s0012-821x(01)00255-2
      Niu, Y., 1997. Mantle Melting and Melt Extraction Processes Beneath Ocean Ridges: Evidence from Abyssal Peridotites. Journal of Petrology, 38(8): 1047-1074. https://doi.org/10.1093/petroj/38.8.1047
      Ohtani, E., 2020. The Role of Water in Earth's Mantle. National Science Review, 7(1): 224-232. https://doi.org/10.1093/nsr/nwz071
      Qiu, X. L., Zhao, M. H., Ao, W., et al., 2011. OBS Survey and Crustal Structure of the SW Sub-Basin and Nansha Block, South China Sea. Chinese Journal of Geophysics, 54(12): 3117-3128 (in Chinese with English abstract). doi: 10.1002/cjg2.1680/full
      Vera, E. E., Diebold, J. B., 1994. Seismic Imaging of Oceanic Layer 2A between 9°30'N and 10°N on the East Pacific Rise from Two-Ship Wide-Aperture Profiles. Journal of Geophysical Research: Solid Earth, 99(B2): 3031-3041. https://doi.org/10.1029/93jb02107
      Wallace, P. J., 2002. Volatiles in Submarine Basaltic Glasses from the Northern Kerguelen Plateau (ODP Site 1140): Implications for Source Region Compositions, Magmatic Processes, and Plateau Subsidence. Journal of Petrology, 43(7): 1311-1326. https://doi.org/10.1093/petrology/43.7.1311
      Wang, T. K., Chen, M. K., Lee, C. S., et al., 2006. Seismic Imaging of the Transitional Crust across the Northeastern Margin of the South China Sea. Tectonophysics, 412(3-4): 237-254. https://doi.org/10.1016/j.tecto.2005.10.039
      Wang, W., Chu, F. Y., Wu, X. C., et al., 2019. Constraining Mantle Heterogeneity Beneath the South China Sea: A New Perspective on Magma Water Content. Minerals, 9(7): 410. https://doi.org/10.3390/min9070410
      White, R. S., Minshull, T. A., Bickle, M. J., et al., 2001. Melt Generation at very Slow-Spreading Oceanic Ridges: Constraints from Geochemical and Geophysical Data. Journal of Petrology, 42(6): 1171-1196. https://doi.org/10.1093/petrology/42.6.1171
      Williams, Q., Hemley, R. J., 2001. Hydrogen in the Deep Earth. Annual Review of Earth and Planetary Sciences, 29(1): 365-418. https://doi.org/10.1146/annurev.earth.29.1.365
      Wu, J., Suppe, J., 2018. Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography. Journal of Earth Science, 29(6): 1304-1318. https://doi.org/10.1007/s12583-017-0813-x
      Yu, X., Liu, Z. F., 2020. Non-Mantle-Plume Process Caused the Initial Spreading of the South China Sea. Scientific Reports, 10: 8500. https://doi.org/10.1038/s41598-020-65174-y
      Yu, Z. T., Li, J. B., Ding, W. W., et al., 2017. Crustal Structure of the Southwest Subbasin, South China Sea, from Wide-Angle Seismic Tomography and Seismic Reflection Imaging. Marine Geophysical Research, 38(1-2): 85-104. https://doi.org/10.1007/s11001-016-9284-1
      Zhang, G. L., Chen, L. H., Jackson, M. G., et al., 2017. Evolution of Carbonated Melt to Alkali Basalt in the South China Sea. Nature Geoscience, 10(3): 229-235. https://doi.org/10.1038/ngeo2877
      Zhang, L., Zhao, M.H., Wang, J., 2013. Correction of OBS Position and Recent Advances of 3D Seismic Exploration in the Central Sub-Basin of South China Sea. Earth Science, 38(1): 33-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201301008.htm
      Zhou, D., Li, C. F., Zlotnik, S., et al., 2020. Correlations between Oceanic Crustal Thickness, Melt Volume, and Spreading Rate from Global Gravity Observation. Marine Geophysical Research, 41(3): 1-16. https://doi.org/10.1007/s11001-020-09413-x
      敖威, 赵明辉, 丘学林, 等, 2012. 南海西北次海盆及其邻区地壳结构和构造意义. 地球科学, 37(4): 779-790. http://www.earth-science.net/article/id/2284
      李忠海, 许志琴, 2015. 大洋俯冲和大陆碰撞沿走向的转换动力学及流体-熔体活动的作用. 岩石学报, 31(12): 3524-3530. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512002.htm
      吕川川, 郝天珧, 丘学林, 等, 2011. 南海西南次海盆北缘海底地震仪测线深部地壳结构研究. 地球物理学报, 54(12): 3129-3138. doi: 10.3969/j.issn.0001-5733.2011.12.013
      丘学林, 赵明辉, 敖威, 等, 2011. 南海西南次海盆与南沙地块的OBS探测和地壳结构. 地球物理学报, 54(12): 3117-3128. doi: 10.3969/j.issn.0001-5733.2011.12.012
      张莉, 赵明辉, 王建, 等, 2013. 南海中央次海盆OBS位置校正及三维地震探测新进展. 地球科学, 38(1): 33-42. doi: 10.3799/dqkx.2013.004
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(2)

      Article views (1746) PDF downloads(122) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return