• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 3
    Mar.  2021
    Turn off MathJax
    Article Contents
    Ding Hanghang, Ding Weiwei, Zhang Fan, Wu Zhaocai, Yin Shaoru, Fang Yinxia, 2021. Asymmetric Deep Structure of the South China Sea Basin and Its Controlling Factors. Earth Science, 46(3): 929-941. doi: 10.3799/dqkx.2020.338
    Citation: Ding Hanghang, Ding Weiwei, Zhang Fan, Wu Zhaocai, Yin Shaoru, Fang Yinxia, 2021. Asymmetric Deep Structure of the South China Sea Basin and Its Controlling Factors. Earth Science, 46(3): 929-941. doi: 10.3799/dqkx.2020.338

    Asymmetric Deep Structure of the South China Sea Basin and Its Controlling Factors

    doi: 10.3799/dqkx.2020.338
    • Received Date: 2020-10-21
    • Publish Date: 2021-03-15
    • The South China Sea basin has a complex tectonic evolutionary history, but the study of the asymmetry of deep structure and the control factors are still inadequate. The residual mantle Bouguer anomaly (RMBA) of the whole basin is calculated by using the latest gravity data collected from the South China Sea and the accurate sediment data based on the explanation of 27 seismic profiles. The crustal thickness of the basin is inverted, and the correlation analysis is carried out by using Crust1.0 data.The results show that there is obvious asymmetry in topography, RMBA and crustal thickness on each side of South China Sea basin, the north side has more sea mountains, lower RMBA value and thicker oceanic crust than the southern side. This apparent north-south asymmetry indicates a higher mantle temperature and more active magmatic activity on the north side, reflecting the asymmetry of the deep structure of the South China Sea. The asymmetry of this deep structure may be related to the southern jumping of the mid-ocean ridge. The mid-ocean ridge jumping resulted in partial melting between the old and new ridges, leading to higher mantle temperatures on the north side of the expansion center, as well as stronger magmatic activity, which showed more negative RMBA values, thicker oceanic crustal thickness and more after-expansion seamounts.

       

    • loading
    • Braitenberg, C., Wienecke, S., Wang, Y., 2006. Basement Structures from Satellite-Derived Gravity Field: South China Sea Ridge. Journal of Geophysical Research: Solid Earth, 111(B5): B05407. https://doi.org/10.1029/2005jb003938
      Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92jb02280
      Brune, S., Heine, C., Clift, P. D., et al., 2017. Rifted Margin Architecture and Crustal Rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea. Marine and Petroleum Geology, 79: 257-281. https://doi.org/10.1016/j.marpetgeo.2016.10.018
      Canales, J. P., Detrick, R. S., Lin, J., et al., 2000. Crustal and Upper Mantle Seismic Structure Beneath the Rift Mountains and across a Nontransform Offset at the Mid-Atlantic Ridge (35°N). Journal of Geophysical Research: Solid Earth, 105(B2): 2699-2719. https://doi.org/10.1029/1999jb900379
      Cannat, M., Rommevaux-Jestin, C., Sauter, D., et al., 1999. Formation of the Axial Relief at the very Slow Spreading Southwest Indian Ridge (49° to 69°E). Journal of Geophysical Research: Solid Earth, 104(B10): 22825-22843. https://doi.org/10.1029/1999jb900195
      Cannat, M., Sauter, D., Mendel, V., et al., 2006. Modes of Seafloor Generation at a Melt-Poor Ultraslow-Spreading Ridge. Geology, 34(7): 605. https://doi.org/10.1130/g22486.1
      Carbotte, S. M., Small, C., Donnelly, K., et al., 2004. A Plate Kinematic Explanation for the Magmatic Segmentation of Mid-Ocean Ridges. Genetics, 180(2): 1167-1175. https://doi.org/10.1534/genetics.108.092551
      Clift, P., Lee, G. H., AnhDuc, N., et al., 2008. Seismic Reflection Evidence for a Dangerous Grounds Miniplate: No Extrusion Origin for the South China Sea. Tectonics, 27(3): TC3008. https://doi.org/10.1029/2007tc002216
      Cullen, A., Reemst, P., Henstra, G., et al., 2010. Rifting of the South China Sea: New Perspectives. Petroleum Geoscience, 16(3): 273-282. https://doi.org/10.1144/1354-079309-908
      Ding, W. W., Franke, D., Li, J. B., et al., 2013. Seismic Stratigraphy and Tectonic Structure from a Composite Multi-Channel Seismic Profile across the Entire Dangerous Grounds, South China Sea. Tectonophysics, 582: 162-176. https://doi.org/10.1016/j.tecto.2012.09.026
      Ding, W. W., Li, J. B., Zhao, M. H., 2017. Preface: Magmatic and Tectonic Process, Seabed Resource from the Mid-Ocean Ridge to Continental Margin. Marine Geophysical Research, 38(1-2): 1-2. https://doi.org/10.1007/s11001-017-9308-5
      Ding, W. W., Sun, Z., Dadd, K., et al., 2018. Structures within the Oceanic Crust of the Central South China Sea Basin and Their Implications for Oceanic Accretionary Processes. Earth and Planetary Science Letters, 488: 115-125. https://doi.org/10.1016/j.epsl.2018.02.011
      Fan, C. Y., Xia, S. H., Zhao, F., et al., 2017. New Insights into the Magmatism in the Northern Margin of the South China Sea: Spatial Features and Volume of Intraplate Seamounts. Geochemistry, Geophysics, Geosystems, 18(6): 2216-2239. https://doi.org/10.1002/2016gc006792
      Gozzard, S., Kusznir, N., Franke, D., et al., 2019. South China Sea Crustal Thickness and Oceanic Lithosphere Distribution from Satellite Gravity Inversion. Petroleum Geoscience, 25(1): 112-128. https://doi.org/10.1144/petgeo2016-162
      Han, S. S., Carbotte, S. M., Canales, J. P., et al., 2016. Seismic Reflection Imaging of the Juan de Fuca Plate from Ridge to Trench: New Constraints on the Distribution of Faulting and Evolution of the Crust Prior to Subduction. Journal of Geophysical Research: Solid Earth, 121(3): 1849-1872. https://doi.org/10.1002/2015jb012416
      Hao, T.Y., Huang, S., Xu, Y., et al., 2008. Comprehensive Geophysical Research on the Deepstructure of Northeastern South China Sea. Chinese Journal of Geophysics, 51(6): 1785-1796 (in Chinese with English abstract). http://www.oalib.com/paper/1568499
      He, E. Y., Zhao, M. H., Qiu, X. L., et al., 2016. Crustal Structure across the Post-Spreading Magmatic Ridge of the East Sub-Basin in the South China Sea: Tectonic Significance. Journal of Asian Earth Sciences, 121: 139-152. https://doi.org/10.1016/j.jseaes.2016.03.003
      Hinz, K., Schlüter, H. U., 1985. Geology of the Dangerous Grounds, South China Sea, and the Continental Margin off Southwest Palawan: Results of SONNE Cruises SO-23 and SO-27. Energy, 10(3-4): 297-315. https://doi.org/10.1016/0360-5442(85)90048-9
      Hutchison, C. S., 2010. The North-West Borneo Trough. Marine Geology, 271(1-2): 32-43. https://doi.org/10.1016/j.margeo.2010.01.007
      Jian, Z. M., Larsen, H. C., Zarikian, C. A. A., et al., 2018. Expedition 368 Preliminary Report: South China Sea Rifted Margin, International Ocean Discovery Program, College Station.
      Kuo, B. Y., Forsyth, D. W., 1988. Gravity Anomalies of the Ridge-Transform System in the South Atlantic between 31 and 34.5° S: Upwelling Centers and Variations in Crustal Thickness. Marine Geophysical Researches, 10(3-4): 205-232. https://doi.org/10.1007/BF00310065
      Laske, G., Masters, G., Ma, Z. T., et al., 2013. Update on CRUST1. 0-A 1-Degree Global Model of Earth's Crust. EGU, Vienna.
      Li, C. F., Li, J. B., Ding, W. W., et al., 2015. Seismic Stratigraphy of the Central South China Sea Basin and Implications for Neotectonics. Journal of Geophysical Research: Solid Earth, 120(3): 1377-1399. https://doi.org/10.1002/2014jb011686
      Li, C. F., Song, T. R., 2012. Magnetic Recording of the Cenozoic Oceanic Crustal Accretion and Evolution of the South China Sea Basin. Chinese Science Bulletin, 57(20): 1879-1895 (in Chinese). doi: 10.1360/csb2012-57-20-1879
      Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567
      Li, F. C., Sun, Z., Yang, H. F., 2018. Possible Spatial Distribution of the Mesozoic Volcanic Arc in the Present-Day South China Sea Continental Margin and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 123(8): 6215-6235. https://doi.org/10.1029/2017jb014861
      Li, J. B., Ding, W. W., Wu, Z. Y., et al., 2012. The Propagation of Seafloor Spreading in the Southwestern Subbasin, South China Sea. Chinese Science Bulletin, 57(20): 1896-1905 (in Chinese). doi: 10.1360/csb2012-57-20-1896
      Li, J. B., Jin, X. L., Gao, J. Y., 2002. Study on Tectonic Geomorphology of the Late Expansion in the Eastern Sub-Basin, South China Sea. Science in China (Series D), 32(3): 239-248 (in Chinese).
      Li, S. L., Meng, X. H., Guo, L. H., et al., 2012. Characteristics of Gravity Anomalies in the South China Sea and Their Tectonic Implications. Geoscience, 26(6): 1154-1161 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201206006.htm
      Lin, J., Purdy, G. M., Schouten, H., et al., 1990. Evidence from Gravity Data for Focused Magmatic Accretion along the Mid-Atlantic Ridge. Nature, 344(6267): 627-632. https://doi.org/10.1038/344627a0
      Magde, L. S., Detrick, R. S., 1995. Crustal and Upper Mantle Contribution to the Axial Gravity Anomaly at the Southern East Pacific Rise. Journal of Geophysical Research: Solid Earth, 100(B3): 3747-3766. https://doi.org/10.1029/94jb02869
      McIntosh, K., Lavier, L., van Avendonk, H., et al., 2014. Crustal Structure and Inferred Rifting Processes in the Northeast South China Sea. Marine and Petroleum Geology, 58: 612-626. https://doi.org/10.1016/j.marpetgeo.2014.03.012
      Mo, X. X., 2019. Magmatism and Deep Geological Process. Earth Science, 44(5): 1487-1493 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905007.htm
      Müller, R. D., Roest, W. R., Royer, J. Y., 1998. Asymmetric Sea-Floor Spreading Caused by Ridge-Plume Interactions. Nature, 396(6710): 455-459. https://doi.org/10.1038/24850
      Müller, R. D., Sdrolias, M., Gaina, C., et al., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World's Ocean Crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. https://doi.org/10.1029/2007gc001743
      Neumann, G. A., Forsyth, D. W., Sandwell, D., 1993. Comparison of Marine Gravity from Shipboard and High-Density Satellite Altimetry along the Mid-Atlantic Ridge, 30.5°-35.5°S. Geophysical Research Letters, 20(15): 1639-1642. https://doi.org/10.1029/93gl01487
      Parker, R. L., 1973. The Rapid Calculation of Potential Anomalies. Geophysical Journal International, 31(4): 447-455. https://doi.org/10.1111/j.1365-246x.1973.tb06513.x
      Qiu, X. L., Zhao, M. H., Xu, H. L., et al., 2012. Important Processes of Deep Seismic Surveys in the South China Sea: Retrospection and Expectation. Journal of Tropical Oceanography, 31(3): 1-9 (in Chinese with English abstract). http://www.researchgate.net/publication/284609799_Important_process_of_deep_seismic_survey_in_the_South_China_Sea_retrospection_and_expectation
      Ruan, A. G., Niu, X. W., Qiu, X. L., et al., 2011. A Wide Angle Ocean Bottom Seismometer Profile across Liyue Bank, the Southern Margin of South China Sea. Chinese Journal of Geophysics, 54(12): 3139-3149 (in Chinese with English abstract). http://www.researchgate.net/publication/243971470_A_Wide_Angle_Ocean_Bottom_Seismometer_Experiment_Across_Liyue_Bank_the_Southern_Margin_of_the_South_China_Sea
      Shen, Y., Forsyth, D. W., 1995. Geochemical Constraints on Initial and Final Depths of Melting Beneath Mid-Ocean Ridges. Journal of Geophysical Research: Solid Earth, 100(B2): 2211-2237. https://doi.org/10.1029/94jb02768
      Sibuet, J. C., Yeh, Y. C., Lee, C. S., 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98-119. https://doi.org/10.1016/j.tecto.2016.02.022
      Sims, K. W. W., DePaolo, D. J., Murrell, M. T., et al., 1999. Porosity of the Melting Zone and Variations in the Solid Mantle Upwelling Rate Beneath Hawaii: Inferences from 238U-230Th-226Ra and 235U-231Pa Disequilibria. Geochimica et Cosmochimica Acta, 63(23-24): 4119-4138. https://doi.org/10.1016/s0016-7037(99)00313-0
      Sun, Z., Stock, J., Klaus, A., et al., 2018. Expedition 367 Preliminary Report: South China Sea Rifted Margin. International Ocean Discovery Program, College Station.
      Sun, Z., Zhong, Z. H., Keep, M., et al., 2009.3D Analogue Modeling of the South China Sea: A Discussion on Breakup Pattern. Journal of Asian Earth Sciences, 34(4): 544-556. https://doi.org/10.1016/j.jseaes.2008.09.002
      Suo, Y. H., 2014. Tectonic-Magmatic processes of the Indian Ocean: Evidence on the Residual Mantle Bouguer Anomaly (Dissertation). Ocean University of China, Qingdao (in Chinese with English abstract).
      Taylor, B., Hayes, D. E., 1983. Origin and History of the South China Sea Basin. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. American Geophysical Union, Washington, D. C. .
      Turcotte, D.L., Schubert, G., 2002. Geodynamics (2nd Edition). Cambridge University Press, Cambridge.
      van Ark, E., Lin, J., 2004. Time Variation in Igneous Volume Flux of the Hawaii-Emperor Hot Spot Seamount Chain. Journal of Geophysical Research: Solid Earth, 109(B11): B11401. https://doi.org/10.1029/2003jb002949
      Wan, K. Y., Xia, S. H., Cao, J. H., et al., 2017. Deep Seismic Structure of the Northeastern South China Sea: Origin of a High-Velocity Layer in the Lower Crust. Journal of Geophysical Research: Solid Earth, 122(4): 2831-2858. https://doi.org/10.1002/2016jb013481
      Wang, Y. J., Han, X. Q., Luo, Z. H., et al., 2009. Late Miocene Magmatism and Evolution of Zhenbei-Huangyan Seamount in the South China Sea: Evidence from Petrochemistry and Chronology. ActaOceanologicaSinica, 31(4): 93-102. https://doi.org/10.1109/CLEOE-EQEC.2009.5194697
      Wei, X. D., Zhao, M. H., Ruan, A. G., et al., 2010. Identification and Application of Shear Waves along the Profile OBS2006-3 in the Mid-Northern South China Sea. Journal of Tropical Oceanography, 29 (5): 72-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDHY201005012.htm
      Wu, Z. C., Gao, J. Y., Ding, W. W., et al., 2017. Moho Depth of the South China Sea Basin from Three-Dimensional Gravity Inversion with Constraint Points. Chinese Journal of Geophysics, 60(7): 2599-2613 (in Chinese with English abstract). doi: 10.1002/cjg2.30053/full
      Wu, Z. L., Ruan, A. G., Li, J. B., et al., 2010. New Progress of Deep Crust Sounding in the Southern Margin of the South China Sea Using Ocean Bottom Seismometers. Journal of Marine Sciences, 28(1): 55-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DHHY201001009.htm
      Xu, H. H., Ma, H., Song, H. B., et al., 2011. Numerical Simulation of Eastern South China Sea Basin Expansion. Chinese Journal of Geophysics, 54(12): 3070-3078 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS201102009.htm
      Yan, P., Liu, H. L., 2004. Tectonic-Stratigraphic Division and Blind Fold Structures in Nansha Waters, South China Sea. Journal of Asian Earth Sciences, 24(3): 337-348. https://doi.org/10.1016/j.jseaes.2003.12.005
      Yan, P., Liu, H. L., 2005. Temporal and Spatial Distributions of Meso-Enozoic Igneous Rocks over South China Sea. Journal of Tropical Oceanography, 24(2): 33-41 (in Chinese with English abstract). http://www.researchgate.net/publication/286185174_Temporal_and_spatial_distributions_of_Meso-Cenozoic_igneous_rocks_over_South_China_Sea
      Yan, Q. S., Shi, X. F., 2006. Mantle Plume (Hotspot)-Ridge Interaction. Marine Geology & Quaternary Geology, 26(5): 131-138 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200605021.htm
      Yan, Q. S., Shi, X. F., Castillo, P. R., 2014. The Late Mesozoic-Cenozoic Tectonic Evolution of the South China Sea: A Petrologic Perspective. Journal of Asian Earth Sciences, 85: 178-201. https://doi.org/10.1016/j.jseaes.2014.02.005
      Yin, S. R., Li, J. B., Ding, W. W., et al., 2020. Sedimentary Filling Characteristics of the South China Sea Oceanic Basin, with Links to Tectonic Activity during and after Seafloor Spreading. International Geology Review, 62(7-8): 887-907. https://doi.org/10.1080/00206814.2018.1522603
      Zhang, F. F., Yang, J. Y., Tian, Z. X., 2010. Regional Characteristics of Gravity Field in the South China Sea. Annual Meeting of Chinese Geoscience Union, Beijing (in Chinese).
      Zhang, F., Lin, J., Zhang, X. B., et al., 2020. Asymmetry in Oceanic Crustal Structure of the South China Sea Basin and Its Implications on Mantle Geodynamics. International Geology Review, 62(7-8): 840-858. https://doi.org/10.1080/00206814.2018.1425922
      Zhang, G. L., Chen, L. H., Jackson, M. G., et al., 2017. Evolution of Carbonated Melt to Alkali Basalt in the South China Sea. Nature Geoscience, 10(3): 229-235. https://doi.org/10.1038/ngeo2877
      Zhang, J., Li, J. B., Ruan, A. G., et al., 2016. The Velocity Structure of a Fossil Spreading Centre in the Southwest Sub-Basin, South China Sea. Geological Journal, 51: 548-561. https://doi.org/10.1002/gj.2778
      Zhang, L., Zhao, M. H., Wang, J., et al., 2013. Correction of OBS Position and Recent Advances of 3D Seismic Exploration in the Central Sub-Basin of South China Sea. Erath Science, 38(1): 33-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201301008.htm
      Zhang, T., Lin, J., Gao, J. Y., 2013. Magmatism and Tectonic Processes in Area a Hydrothermal Vent on the Southwest Indian Ridge. Science in China (Series D), 43(11): 1834-1846 (in Chinese).
      Zhao, M. H., Qiu, X. L., Xu, H. L., et al., 2011. Deep Seismic Surveys in the Southern South China Sea and Contrast on Its Conjugate Margins. Erath Science, 36(5): 823-830 (in Chinese with English abstract). http://www.researchgate.net/publication/286782243_Deep_seismic_surveys_in_the_southern_South_China_Sea_and_contrast_on_its_conjugate_margins
      Zhao, Y. H., Ding, W. W., Yin, S. R., et al., 2020. Asymmetric Post-Spreading Magmatism in the South China Sea: Based on the Quantification of the Volume and Its Spatiotemporal Distribution of the Seamounts. International Geology Review, 62(7-8): 955-969. https://doi.org/10.1080/00206814.2019.1577189
      Zhou, D., Ru, K., Chen, H. Z., 1995. Kinematics of Cenozoic Extension on the South China Sea Continental Margin and Its Implications for the Tectonic Evolution of the Region. Tectonophysics, 251(1-4): 161-177. https://doi.org/10.1016/0040-1951(95)00018-6
      郝天珧, 黄松, 徐亚, 等, 2008. 南海东北部及邻区深部结构的综合地球物理研究. 地球物理学报, 51(6): 1785-1796. doi: 10.3321/j.issn:0001-5733.2008.06.019
      李春峰, 宋陶然, 2012. 南海新生代洋壳扩张与深部演化的磁异常记录. 科学通报, 57(20): 1879-1895. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220007.htm
      李家彪, 丁巍伟, 吴自银, 等, 2012. 南海西南海盆的渐进式扩张. 科学通报, 57(20): 1896-1905. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220008.htm
      李家彪, 金翔龙, 高金耀, 2002. 南海东部海盆晚期扩张的构造地貌研究. 中国科学(D辑), 32(3): 239-248. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200203008.htm
      李淑玲, 孟小红, 郭良辉, 等, 2012. 南海重力异常特征及其显著的构造意义. 现代地质, 26(6): 1154-1161. doi: 10.3969/j.issn.1000-8527.2012.06.004
      莫宣学, 2019. 岩浆作用与地球深部过程. 地球科学, 44(5): 1487-1493. doi: 10.3799/dqkx.2019.972
      丘学林, 赵明辉, 徐辉龙, 等, 2012. 南海深地震探测的重要科学进程: 回顾和展望. 热带海洋学报, 31(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201203002.htm
      阮爱国, 牛雄伟, 丘学林, 等, 2011. 穿越南沙礼乐滩的海底地震仪广角地震试验. 地球物理学报, 54(12): 3139-3149. doi: 10.3969/j.issn.0001-5733.2011.12.014
      索艳慧, 2014. 印度洋构造-岩浆过程: 剩余地幔布格重力异常证据(博士学位论文). 青岛: 中国海洋大学.
      卫小冬, 赵明辉, 阮爱国, 等, 2010. 南海中北部OBS2006-3地震剖面中横波的识别与应用. 热带海洋学报, 29(5): 72-80. doi: 10.3969/j.issn.1009-5470.2010.05.011
      吴招才, 高金耀, 丁巍伟, 等, 2017. 南海海盆三维重力约束反演莫霍面深度及其特征. 地球物理学报, 60(7): 2599-2613. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201707009.htm
      吴振利, 阮爱国, 李家彪, 等, 2010. 南海南部海底地震仪试验及初步结果. 海洋学研究, 28(1): 55-61. doi: 10.3969/j.issn.1001-909X.2010.01.008
      许鹤华, 马辉, 宋海斌, 等, 2011. 南海东部海盆扩张过程的数值模拟. 地球物理学报, 54(12): 3070-3078. doi: 10.3969/j.issn.0001-5733.2011.12.008
      阎贫, 刘海龄, 2005. 南海及其周缘中新生代火山活动时空特征与南海的形成模式. 热带海洋学报, 24(2): 33-41. doi: 10.3969/j.issn.1009-5470.2005.02.005
      鄢全树, 石学法, 2006. 洋中脊与地幔柱热点相互作用研究进展. 海洋地质与第四纪地质, 26(5): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200605021.htm
      张菲菲, 杨金玉, 田振兴, 2010. 南海海域重力场分区特征. 中国地球物理学会年会, 北京.
      张莉, 赵明辉, 王建, 等, 2013. 南海中央次海盆OBS位置校正及三维地震探测新进展. 地球科学, 38(1): 33-42. doi: 10.3799/dqkx.2013.004
      张涛, 林间, 高金耀, 2013. 西南印度洋中脊热液区的岩浆活动与构造特征. 中国科学(D辑), 43(11): 1834-1846. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201311013.htm
      赵明辉, 丘学林, 徐辉龙, 等, 2011. 南海南部深地震探测及南北共轭陆缘对比. 地球科学, 36(5): 823-830. doi: 10.3799/dqkx.2011.085
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(1)

      Article views (1920) PDF downloads(171) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return