• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 3
    Mar.  2021
    Turn off MathJax
    Article Contents
    Pan Mohan, Yang Ting, Lin Jian, Zhang Fan, Zhou Zhiyuan, Li Haiyong, Zhang Xubo, Fan Xingli, Cheng Zihua, 2021. The Formation Mechanism of Petit-Spot Volcanoes and the Nature of the Lithosphere-Asthenosphere Boundary (LAB). Earth Science, 46(3): 817-825. doi: 10.3799/dqkx.2020.340
    Citation: Pan Mohan, Yang Ting, Lin Jian, Zhang Fan, Zhou Zhiyuan, Li Haiyong, Zhang Xubo, Fan Xingli, Cheng Zihua, 2021. The Formation Mechanism of Petit-Spot Volcanoes and the Nature of the Lithosphere-Asthenosphere Boundary (LAB). Earth Science, 46(3): 817-825. doi: 10.3799/dqkx.2020.340

    The Formation Mechanism of Petit-Spot Volcanoes and the Nature of the Lithosphere-Asthenosphere Boundary (LAB)

    doi: 10.3799/dqkx.2020.340
    • Received Date: 2020-10-30
    • Publish Date: 2021-03-01
    • The petit-spot volcanoes discovered near the subduction zone's outer rise represent a new type of seafloor magmatic activity. These volcanoes are small in scale, appear in clusters, and are extremely young. The rock samples are dominated by EM1 alkaline basalt, with high porosity and rich volatile components. The origin of magma of petit-spot volcanoes and the dynamic processes related to magma upwelling are still in debate. This paper presents the characteristics of petit-spot volcanoes and summarizes the three models proposed by previous studies on the formation mechanism and magma sources of these unique volcanoes. Based on the latest findings showing the lithosphere-asthenosphere boundary (LAB) beneath the oceanic plate may contain melts, we infer that the petit-spot volcanoes likely contain the clues about the fundamental scientific question of the nature of LAB. On the other hand, the volcanic rocks are rich in CO2, which likely is the volatiles responsible for melt generation in the asthenosphere and melt accumulation at LAB. Therefore, the petit-spot volcano may also account for an important part of the carbon cycle. Finally, this paper proposes a comprehensive multidisciplinary approach is needed to reveal the formation mechanism of such unique volcanoes.

       

    • loading
    • Behn, M. D., Hirth, G., Elsenbeck II, J. R., 2009. Implications of Grain Size Evolution on the Seismic Structure of the Oceanic Upper Mantle. Earth and Planetary Science Letters, 282(1-4): 178-189. https://doi.org/10.1016/j.epsl.2009.03.014
      Bercovici, D., Karato, S. I., 2003. Whole-Mantle Convection and the Transition-Zone Water Filter. Nature, 425(6953): 39-44. https://doi.org/10.1038/nature01918
      Dasgupta, R., Hirschmann, M. M., 2006. Melting in the Earth's Deep Upper Mantle Caused by Carbon Dioxide. Nature, 440(7084): 659-662. https://doi.org/10.1038/nature04612
      Faul, U. H., Jackson, I., 2005. The Seismological Signature of Temperature and Grain Size Variations in the Upper Mantle. Earth and Planetary Science Letters, 234(1-2): 119-134. https://doi.org/10.1016/j.epsl.2005.02.008
      Fischer, K. M., Ford, H. A., Abt, D. L., et al., 2010. The Lithosphere-Asthenosphere Boundary. Annual Review of Earth and Planetary Sciences, 38(1): 551-575. https://doi.org/10.1146/annurev-earth-040809-152438
      Forsyth, D. W., Harmon, N., Scheirer, D. S., et al., 2006. Distribution of Recent Volcanism and the Morphology of Seamounts and Ridges in the GLIMPSE Study Area: Implications for the Lithospheric Cracking Hypothesis for the Origin of Intraplate, Non-Hot Spot Volcanic Chains. Journal of Geophysical Research: Solid Earth, 111(B11): B11407. https://doi.org/10.1029/2005JB004075
      Fujiwara, T., Hirano, N., Abe, N., et al., 2007. Subsurface Structure of the "Petit-Spot" Volcanoes on the Northwestern Pacific Plate. Geophysical Research Letters, 34(13): L13305. https://doi.org/10.1029/2007GL030439
      Gaherty, J. B., Jordan, T. H., Gee, L. S., 1996. Seismic Structure of the Upper Mantle in a Central Pacific Corridor. Journal of Geophysical Research: Solid Earth, 101(B10): 22291-22309. https://doi.org/10.1029/96JB01882
      Gardés, E., Laumonier, M., Massuyeau, M., et al., 2020. UnravellingPartial Melt Distribution in the Oceanic Low Velocity Zone. Earth and Planetary Science Letters, 540: 116242. https://doi.org/10.1016/j.epsl.2020.116242
      Green, D. H., Hibberson, W. O., Rosenthal, A., et al., 2014. Experimental Study of the Influence of Water on Melting and Phase Assemblages in the Upper Mantle. Journal of Petrology, 55(10): 2067-2096. https://doi.org/10.1093/petrology/egu050
      Harmon, N., Forsyth, D. W., Scheirer, D. S., 2006. Analysis of Gravity and Topography in the GLIMPSE Study Region: Isostatic Compensation and Uplift of the Sojourn and HotuMatua Ridge Systems. Journal of Geophysical Research: Solid Earth, 111(B11): B11406. https://doi.org/10.1029/2005JB004071
      Hirano, N., 2011. Petit-Spot Volcanism: A New Type of Volcanic Zone Discovered near a Trench. Geochemical Journal, 45(2): 157-167. https://doi.org/10.2343/geochemj.1.0111
      Hirano, N., Kawamura, K., Hattori, M., et al., 2001. A New Type of Intra-Plate Volcanism; Young Alkali-Basalts Discovered from the Subducting Pacific Plate, Northern Japan Trench. Geophysical Research Letters, 28(14): 2719-2722. https://doi.org/10.1029/2000GL012426
      Hirano, N., Koppers, A. A., Takahashi, A., et al., 2008. Seamounts, Knolls and Petit-Spot Monogenetic Volcanoes on the Subducting Pacific Plate. Basin Research, 20(4): 543-553. https://doi.org/10.1111/j.1365-2117.2008.00363.x
      Hirano, N., Machida, S., Abe, N., et al., 2013. Petit-Spot Lava Fields off the Central Chile Trench Induced by Plate Flexure. Geochemical Journal, 47(2): 249-257. https://doi.org/10.2343/geochemj.2.0227
      Hirano, N., Machida, S., Sumino, H., et al., 2019. Petit-Spot Volcanoes on the Oldest Portion of the Pacific Plate. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 154: 103142. https://doi.org/10.1016/j.dsr.2019.103142
      Hirano, N., Takahashi, E., Yamamoto, J., et al., 2006. Volcanism in Response to Plate Flexure. Science, 313(5792): 1426-1428. https://doi.org/10.1126/science.1128235
      Hirschmann, M. M., 2010. Partial Melt in the Oceanic Low Velocity Zone. Physics of the Earth and Planetary Interiors, 179(1-2): 60-71. https://doi.org/10.1016/j.pepi.2009.12.003
      Hoernle, K., Hauff, F., Werner, R., et al., 2011. Origin of Indian Ocean Seamount Province by Shallow Recycling of Continental Lithosphere. Nature Geoscience, 4(12): 883-887. https://doi.org/10.1038/ngeo1331
      Karato, S. I., 2011. Water Distribution across the Mantle Transition Zone and Its Implications for Global Material Circulation. Earth and Planetary Science Letters, 301(3-4): 413-423. https://doi.org/10.1016/j.epsl.2010.11.038
      Karato, S. I., 2012. On the Origin of the Asthenosphere. Earth and Planetary Science Letters, 321-322: 95-103. https://doi.org/10.1016/j.epsl.2012.01.001
      Karato, S. I., Park, J., 2018. On the Origin of the Upper Mantle Seismic Discontinuities. Lithospheric Discontinuities, 5-34.
      Kawakatsu, H., Kumar, P., Takei, Y., et al., 2009. Seismic Evidence for Sharp Lithosphere-Asthenosphere Boundaries of Oceanic Plates. Science, 324(5926): 499-502. https://doi.org/10.1126/science.1169499
      Kelbert, A., Schultz, A., Egbert, G., 2009. Global Electromagnetic Induction Constraints on Transition-Zone Water Content Variations. Nature, 460(7258): 1003-1006. https://doi.org/10.1038/nature08257
      Kono, Y., Kenney-Benson, C., Hummer, D., et al., 2014. Ultralow Viscosity of Carbonate Melts at High Pressures. Nature Communications, 5(1): 5091. https://doi.org/10.1038/ncomms6091
      Lin, P. Y. P., Gaherty, J. B., Jin, G., et al., 2016. High-Resolution Seismic Constraints on Flow Dynamics in the Oceanic Asthenosphere. Nature, 535(7613): 538-541. https://doi.org/10.1038/nature18012
      Liu, J., Hirano, N., Machida, S., et al., 2020. Melting of Recycled Ancient Crust Responsible for the Gutenberg Discontinuity. Nature Communications, 11: 172. https://doi.org/10.1038/s41467-019-13958-w
      Ma C., Tang Y., Ying J., 2019. Magmatism in Subduction Zones and Growth of Continental Crust. Earth Science, 44(4): 1128-1142 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904006.htm
      Machida, S., Hirano, N., Kimura, J. I., 2009. Evidence for Recycled Plate Material in Pacific Upper Mantle Unrelated to Plumes. Geochimica et Cosmochimica Acta, 73(10): 3028-3037. https://doi.org/10.1016/j.gca.2009.01.026
      Machida, S., Hirano, N., Sumino, H., et al., 2015. Petit-Spot Geology Reveals Melts in Upper-Most Asthenosphere Dragged by Lithosphere. Earth and Planetary Science Letters, 426: 267-279. https://doi.org/10.1016/j.epsl.2015.06.018
      Machida, S., Kogiso, T., Hirano, N., 2017. Petit-Spot as Definitive Evidence for Partial Melting in the Asthenosphere Caused by CO2. Nature Communications, 8: 14302. https://doi.org/10.1038/ncomms14302
      Mehouachi, F., Singh, S. C., 2018. Water-Rich Sublithospheric Melt Channel in the Equatorial Atlantic Ocean. Nature Geoscience, 11(1): 65-69. https://doi.org/10.1038/s41561-017-0034-z
      Mo X. X., 2019. Magmatism and Deep Geological Process. Earth Science, 44(5): 1487-1493 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905007.htm
      Naif, S., Key, K., Constable, S., et al., 2013. Melt-Rich Channel Observed at the Lithosphere-Asthenosphere Boundary. Nature, 495(7441): 356-359. https://doi.org/10.1038/nature11939
      Ohira, A., Kodaira, S., Gou, F. J., et al., 2018. Seismic Structure of the Oceanic Crust around Petit-Spot Volcanoes in the Outer-Rise Region of the Japan Trench. Geophysical Research Letters, 45(20): 11123-111129. https://doi.org/10.1029/2018gl080305
      Okumura, S., Hirano, N., 2013. Carbon Dioxide Emission to Earth's Surface by Deep-Sea Volcanism. Geology, 41(11): 1167-1170. https://doi.org/10.1130/g34620.1
      Pearson, D. G., Brenker, F. E., Nestola, F., et al., 2014. Hydrous Mantle Transition Zone Indicated by Ringwoodite Included within Diamond. Nature, 507(7491): 221-224. https://doi.org/10.1038/nature13080
      Qin, Y. F., Singh, S. C., Grevemeyer, I., et al., 2020. Discovery of Flat Seismic Reflections in the Mantle Beneath the Young Juan de Fuca Plate. Nature Communications, 11: 4122. https://doi.org/10.1038/s41467-020-17946-3
      Reinhard, A. A., Jackson, M. G., Blusztajn, J., et al., 2019. "Petit Spot" Rejuvenated Volcanism Superimposed on Plume-Derived Samoan Shield Volcanoes: Evidence from a 645-m Drill Core from Tutuila Island, American Samoa. Geochemistry, Geophysics, Geosystems, 20(3): 1485-1507. https://doi.org/10.1029/2018gc007985
      Ritter, X., Sanchez-Valle, C., Sator, N., et al., 2020. Density of Hydrous Carbonate Melts under Pressure, Compressibility of Volatiles and Implications for Carbonate Melt Mobility in the Upper Mantle. Earth and Planetary Science Letters, 533: 116043. https://doi.org/10.1016/j.epsl.2019.116043
      Rohrbach, A., Schmidt, M. W., 2011. Redox Freezing and Melting in the Earth's Deep Mantle Resulting from Carbon-Iron Redox Coupling. Nature, 472(7342): 209-212. https://doi.org/10.1038/nature09899
      Russell, J. B., Gaherty, J. B., Lin, P. Y. P., et al., 2019. High-Resolution Constraints on Pacific Upper Mantle Petrofabric Inferred from Surface-Wave Anisotropy. Journal of Geophysical Research: Solid Earth, 124(1): 631-657. https://doi.org/10.1029/2018jb016598
      Rychert, C. A., Shearer, P. M., 2011. Imaging the Lithosphere-Asthenosphere Boundary Beneath the Pacific Using SS Waveform Modeling. Journal of Geophysical Research Atmospheres, 116(B7): B07307. https://doi.org/10.1029/2010jb008070
      Sakamaki, T., Suzuki, A., Ohtani, E., et al., 2013. Ponded Melt at the Boundary between the Lithosphere and Asthenosphere. Nature Geoscience, 6(12): 1041-1044. https://doi.org/10.1038/ngeo1982
      Sato, Y., Hirano, N., Machida, S., et al., 2018. Direct Ascent to the Surface of Asthenospheric Magma in a Region of Convex Lithospheric Flexure. International Geology Review, 60(10): 1231-1243. https://doi.org/10.1080/00206814.2017.1379912
      Schmerr, N., 2012. The Gutenberg Discontinuity: Melt at the Lithosphere-Asthenosphere Boundary. Science, 335(6075): 1480-1483. https://doi.org/10.1126/science.1215433
      Sifré, D., Gardés, E., Massuyeau, M., et al., 2014. Electrical Conductivity during Incipient Melting in the Oceanic Low-Velocity Zone. Nature, 509(7498): 81-85. https://doi.org/10.1038/nature13245
      Stagno, V., Ojwang, D. O., McCammon, C. A., et al., 2013. The Oxidation State of the Mantle and the Extraction of Carbon from Earth's Interior. Nature, 493(7430): 84-88. https://doi.org/10.1038/nature11679
      Stern, T. A., Henrys, S. A., Okaya, D., et al., 2015. A Seismic Reflection Image for the Base of a Tectonic Plate. Nature, 518(7537): 85-88. https://doi.org/10.1038/nature14146
      Tan, Y., Helmberger, D. V., 2007. Trans-Pacific Upper Mantle Shear Velocity Structure. Journal of Geophysical Research: Solid Earth, 112(B8): B08301. https://doi.org/10.1029/2006JB004853
      Taneja, R., O'Neill, C., Lackie, M., et al., 2015. 40Ar/39Ar Geochronology and the Paleoposition of Christmas Island (Australia), Northeast Indian Ocean. Gondwana Research, 28(1): 391-406. https://doi.org/10.1016/j.gr.2014.04.004
      Valentine, G. A., Hirano, N., 2010. Mechanisms of Low-Flux Intraplate Volcanic Fields-Basin and Range (North America) and Northwest Pacific Ocean. Geology, 38(1): 55-58. https://doi.org/10.1130/g30427.1
      Wessel, P., Sandwell, D., Kim, S. S., 2010. The Global Seamount Census. Oceanography, 23(1): 24-33. https://doi.org/10.5670/oceanog.2010.60
      Wyllie, P. J., 1988. Magma Genesis, Plate Tectonics, and Chemical Differentiation of the Earth. Reviews of Geophysics, 26(3): 370-404. https://doi.org/10.1029/RG026i003p00370
      Yamamoto, J., Korenaga, J., Hirano, N., et al., 2014. Melt-Rich Lithosphere-Asthenosphere Boundary Inferred from Petit-Spot Volcanoes. Geology, 42(11): 967-970. https://doi.org/10.1130/g35944.1
      Yang, J., Faccenda, M., 2020. Intraplate Volcanism Originating from Upwelling Hydrous Mantle Transition Zone. Nature, 579(7797): 88-91. https://doi.org/10.1038/s41586-020-2045-y
      Yesson, C., Clark, M. R., Taylor, M. L., et al., 2011. The Global Distribution of Seamounts Based on 30 Arc Seconds Bathymetry Data. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 58(4): 442-453. https://doi.org/10.1016/j.dsr.2011.02.004
      Zhang, F., Lin, J., Zhou, Z. Y., et al., 2018. Intra- and Intertrench Variations in Flexural Bending of the Manila, Mariana and Global Trenches: Implications on Plate Weakening in Controlling Trench Dynamics. Geophysical Journal International, 212(2): 1429-1449. https://doi.org/10.1093/gji/ggx488
      Zhou, Z. Y., Lin, J., 2018. Elasto-Plastic Deformation and Plate Weakening Due to Normal Faulting in the Subducting Plate along the Mariana Trench. Tectonophysics, 734/735: 59-68. https://doi.org/10.1016/j.tecto.2018.04.008
      马超, 汤艳杰, 英基丰, 2019. 俯冲带岩浆作用与大陆地壳生长. 地球科学, 44(4): 1128-1142. doi: 10.3799/dqkx.2019.026
      莫宣学, 2019. 岩浆作用与地球深部过程. 地球科学, 44(5): 1487-1493. doi: 10.3799/dqkx.2019.972
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(2)

      Article views (2210) PDF downloads(140) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return