• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 9
    Oct.  2021
    Turn off MathJax
    Article Contents
    Wen Tao, Zhang Xin, Sun Jinshan, Jia Yongsheng, Lang Min, Jia Wenjun, Li Decheng, Sun Lixia, Tang Huiming, 2021. Brittle Evaluation Based on Energy Evolution at Pre-Peak and Post-Peak Stage. Earth Science, 46(9): 3385-3396. doi: 10.3799/dqkx.2020.342
    Citation: Wen Tao, Zhang Xin, Sun Jinshan, Jia Yongsheng, Lang Min, Jia Wenjun, Li Decheng, Sun Lixia, Tang Huiming, 2021. Brittle Evaluation Based on Energy Evolution at Pre-Peak and Post-Peak Stage. Earth Science, 46(9): 3385-3396. doi: 10.3799/dqkx.2020.342

    Brittle Evaluation Based on Energy Evolution at Pre-Peak and Post-Peak Stage

    doi: 10.3799/dqkx.2020.342
    • Received Date: 2020-07-08
      Available Online: 2021-10-14
    • Publish Date: 2021-10-14
    • Rock brittleness is one of the important mechanical properties of rock mass, which is so crucial for accurately evaluating hydraulic fracturing of oil and gas reservoir and rock bursting engineering. Existing methods of rock brittleness based on energy theory were summarized, and limitations of these indexes were analyzed in detail. In this study, energy evolution characteristics at pre-peak and post-peak stage are comprehensively considered. A new method to determine brittleness index of rocks based on complete stress-strain curves is established, which more reasonably describes the rock brittleness. To verify the rationality of the method, four sets of rock mechanics tests are collected to test the new index. Test results show that the new brittleness index gradually increases with the increase of confining pressure. Under low confining pressure, both coal and group 1 of shale exhibit strong brittleness, while under high confining pressure, the brittleness of red sandstone and group 2 of shale is obviously weakened, showing that the characteristics of brittle-ductile transition of rocks with increasing of the confining pressure. Then in actual slope engineering, the rationality of the new brittleness index is further validated by the tests of slate, which may be expected to offer some references for evaluating rock brittleness.

       

    • loading
    • Ai, C., Zhang, J., Li, Y. W., et al., 2016. Estimation Criteria for Rock Brittleness Based on Energy Analysis during the Rupturing Process. Rock Mechanics and Rock Engineering, 49(12): 4681-4698. https://doi.org/10.1007/s00603-016-1078-x
      Altindag, R., 2002. The Evaluation of Rock Brittleness Concept on Rotary Blast Hold Drills. Journal of the Southern African Institute of Mining and Metallurgy 102(1): 61-66. http://saimm.server291.com/Journal/v102n01p061.pdf
      Bishop, A., 1967. Progressive Failure with Special Reference to the Mechanism Causing It. Proceedings of the GeoTechnical Conference, Oslo, 142-150.
      Feng, R. H., Zhang, Y. H., Rezagholilou, A., et al., 2020. Brittleness Index: From Conventional to Hydraulic Fracturing Energy Model. Rock Mechanics and Rock Engineering, 53(2): 739-753. https://doi.org/10.1007/s00603-019-01942-1
      Fu, L., Shen, R. C., Pang, F., et al., 2019. Experiments on Friction and Non-Steady Slip for Shale. Earth Science, 44(11): 3783-3793 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911018.htm
      Ge, Y. F., Zhou, T., Huo, S. L., et al., 2019. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche. Earth Science, 44(11): 3939-3949 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911028.htm
      Hou, Z. K., 2018. Research on Hydraulic Fracturing Tests and Mechanism of Crack Extension of Longmaxi Shale (Dissertation). Chongqing University, Chongqing (in Chinese with English abstract).
      Hucka, V., Das, B., 1974. Brittleness Determination of Rocks by Different Methods. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 11(10): 389-392. https://doi.org/10.1016/0148-9062(74)91109-7
      Kang, J. T., Wu, Q., Tang, H. M., et al., 2019. Strength Degradation Mechanism of Soft and Hard Interbedded Rock Masses of Badong Formation Caused by Rock/Discontinuity Degradation. Earth Science, 44(11): 3950-3960 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911029.htm
      Li, L. C., Zhai, M. Y., Zhang, L. Y., et al., 2019. Brittleness Evaluation of Glutenite Based on Energy Balance and Damage Evolution. Energies, 12(18): 3421. https://doi.org/10.3390/en12183421
      Meng, F. Z., Zhou, H., Zhang, C. Q., et al., 2015. Evaluation Methodology of Brittleness of Rock Based on Post-Peak Stress-Strain Curves. Rock Mechanics and Rock Engineering, 48(5): 1787-1805. https://doi.org/10.1007/s00603-014-0694-6
      Munoz, H., Taheri, A., Chanda, E. K., 2016. Fracture Energy-Based Brittleness Index Development and Brittleness Quantification by Pre-Peak Strength Parameters in Rock Uniaxial Compression. Rock Mechanics and Rock Engineering, 49(12): 4587-4606. https://doi.org/10.1007/s00603-016-1071-4
      Rahimzadeh Kivi, I., Ameri, M., Molladavoodi, H., 2018. Shale Brittleness Evaluation Based on Energy Balance Analysis of Stress-Strain Curves. Journal of Petroleum Science and Engineering, 167: 1-19. https://doi.org/10.1016/j.petrol.2018.03.061
      Song, H. Q., Zuo, J. P., Chen, Y., et al., 2019. Revised Energy Drop Coefficient Based on Energy Characteristics in Whole Process of Rock Failure. Rock and Soil Mechanics, 40(1): 91-98 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201901006.htm
      Tarasov, B., Potvin, Y., 2013. Universal Criteria for Rock Brittleness Estimation under Triaxial Compression. International Journal of Rock Mechanics and Mining Sciences, 59: 57-69. https://doi.org/10.1016/j.ijrmms.2012.12.011
      Wen, T., Tang, H. M., Huang, L., et al., 2020. Energy Evolution: A New Perspective on the Failure Mechanism of Purplish-Red Mudstones from the Three Gorges Reservoir Area, China. Engineering Geology, 264: 105350. https://doi.org/10.1016/j.enggeo.2019.105350
      Wen, T., Tang, H. M., Ma, J. W., et al., 2018. Evaluation of Methods for Determining Crack Initiation Stress under Compression. Engineering Geology, 235: 81-97. https://doi.org/10.1016/j.enggeo.2018.01.018
      Wen, T., Tang, H. M., Ma, J. W., et al., 2019. Deformation Simulation for Rock in Consideration of Initial Damage and Residual Strength. Earth Science, 44(2): 652-663 (in Chinese with English abstract). http://www.researchgate.net/publication/332625403_Deformation_Simulation_for_Rock_in_Consideration_of_Initial_Damage_and_Residual_Strength
      Zhang, J., Ai, C., Li, Y. W., et al., 2017. Brittleness evaluation index based on energy variation in the whole process of rock failure. Chinese Journal of Rock Mechanics and Engineering, 36(6): 1326-1340 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201706004.htm
      Zhang, J., Ai, C., Li, Y. W., et al., 2018. Energy-Based Brittleness Index and Acoustic Emission Characteristics of Anisotropic Coal under Triaxial Stress Condition. Rock Mechanics and Rock Engineering, 51(11): 3343-3360. https://doi.org/10.1007/s00603-018-1535-9
      Zhang, S., Tang, H. M., Liu, X., et al., 2018. Seepage and Instability Characteristics of Slope Based on Spatial Variation Structure of Saturated Hydraulic Conductivity. Earth Science, 43(2): 622-634 (in Chinese with English abstract).
      Zhou, H., Meng, F. Z., Zhang, C. Q., et al., 2014. Quantitative Evaluation of Rock Brittleness Based on Stress-Strain Curve. Chinese Journal of Rock Mechanics and Engineering, 33(6): 1114-1122 (in Chinese with English abstract). http://www.researchgate.net/publication/312536550_Quantitative_evaluation_of_rock_brittleness_based_on_stress-strain_curve
      付利, 申瑞臣, 庞飞, 等, 2019. 页岩剪切摩擦与非稳态滑移特性实验. 地球科学, 44(11): 3783-3793. doi: 10.3799/dqkx.2019.189
      葛云峰, 周婷, 霍少磊, 等, 2019. 高速远程滑坡运动堆积过程中的能量传递机制. 地球科学, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589
      侯振坤, 2018. 龙马溪组页岩水力压裂试验及裂缝延伸机理研究(博士学位论文). 重庆: 重庆大学.
      亢金涛, 吴琼, 唐辉明, 等, 2019. 岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制. 地球科学, 44(11): 3950-3960. doi: 10.3799/dqkx.2019.110
      宋洪强, 左建平, 陈岩, 等, 2019. 基于岩石破坏全过程能量特征改进的能量跌落系数. 岩土力学, 40(1): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901006.htm
      温韬, 唐辉明, 马俊伟, 等, 2019. 考虑初始损伤和残余强度的岩石变形过程模拟. 地球科学, 44(2): 652-663. doi: 10.3799/dqkx.2018.212
      张军, 艾池, 李玉伟, 等, 2017. 基于岩石破坏全过程能量演化的脆性评价指数. 岩石力学与工程学报, 36(6): 1326-1340. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201706004.htm
      张抒, 唐辉明, 刘晓, 等, 2018. 基于饱和渗透系数空间变异结构的斜坡渗流及失稳特征. 地球科学, 43(2): 622-634. doi: 10.3799/dqkx.2017.617
      周辉, 孟凡震, 张传庆, 等, 2014. 基于应力-应变曲线的岩石脆性特征定量评价方法. 岩石力学与工程学报, 33(6): 1114-1122. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201406004.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(4)

      Article views (1647) PDF downloads(75) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return