Citation: | Wen Tao, Zhang Xin, Sun Jinshan, Jia Yongsheng, Lang Min, Jia Wenjun, Li Decheng, Sun Lixia, Tang Huiming, 2021. Brittle Evaluation Based on Energy Evolution at Pre-Peak and Post-Peak Stage. Earth Science, 46(9): 3385-3396. doi: 10.3799/dqkx.2020.342 |
Ai, C., Zhang, J., Li, Y. W., et al., 2016. Estimation Criteria for Rock Brittleness Based on Energy Analysis during the Rupturing Process. Rock Mechanics and Rock Engineering, 49(12): 4681-4698. https://doi.org/10.1007/s00603-016-1078-x
|
Altindag, R., 2002. The Evaluation of Rock Brittleness Concept on Rotary Blast Hold Drills. Journal of the Southern African Institute of Mining and Metallurgy 102(1): 61-66. http://saimm.server291.com/Journal/v102n01p061.pdf
|
Bishop, A., 1967. Progressive Failure with Special Reference to the Mechanism Causing It. Proceedings of the GeoTechnical Conference, Oslo, 142-150.
|
Feng, R. H., Zhang, Y. H., Rezagholilou, A., et al., 2020. Brittleness Index: From Conventional to Hydraulic Fracturing Energy Model. Rock Mechanics and Rock Engineering, 53(2): 739-753. https://doi.org/10.1007/s00603-019-01942-1
|
Fu, L., Shen, R. C., Pang, F., et al., 2019. Experiments on Friction and Non-Steady Slip for Shale. Earth Science, 44(11): 3783-3793 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911018.htm
|
Ge, Y. F., Zhou, T., Huo, S. L., et al., 2019. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche. Earth Science, 44(11): 3939-3949 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911028.htm
|
Hou, Z. K., 2018. Research on Hydraulic Fracturing Tests and Mechanism of Crack Extension of Longmaxi Shale (Dissertation). Chongqing University, Chongqing (in Chinese with English abstract).
|
Hucka, V., Das, B., 1974. Brittleness Determination of Rocks by Different Methods. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 11(10): 389-392. https://doi.org/10.1016/0148-9062(74)91109-7
|
Kang, J. T., Wu, Q., Tang, H. M., et al., 2019. Strength Degradation Mechanism of Soft and Hard Interbedded Rock Masses of Badong Formation Caused by Rock/Discontinuity Degradation. Earth Science, 44(11): 3950-3960 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911029.htm
|
Li, L. C., Zhai, M. Y., Zhang, L. Y., et al., 2019. Brittleness Evaluation of Glutenite Based on Energy Balance and Damage Evolution. Energies, 12(18): 3421. https://doi.org/10.3390/en12183421
|
Meng, F. Z., Zhou, H., Zhang, C. Q., et al., 2015. Evaluation Methodology of Brittleness of Rock Based on Post-Peak Stress-Strain Curves. Rock Mechanics and Rock Engineering, 48(5): 1787-1805. https://doi.org/10.1007/s00603-014-0694-6
|
Munoz, H., Taheri, A., Chanda, E. K., 2016. Fracture Energy-Based Brittleness Index Development and Brittleness Quantification by Pre-Peak Strength Parameters in Rock Uniaxial Compression. Rock Mechanics and Rock Engineering, 49(12): 4587-4606. https://doi.org/10.1007/s00603-016-1071-4
|
Rahimzadeh Kivi, I., Ameri, M., Molladavoodi, H., 2018. Shale Brittleness Evaluation Based on Energy Balance Analysis of Stress-Strain Curves. Journal of Petroleum Science and Engineering, 167: 1-19. https://doi.org/10.1016/j.petrol.2018.03.061
|
Song, H. Q., Zuo, J. P., Chen, Y., et al., 2019. Revised Energy Drop Coefficient Based on Energy Characteristics in Whole Process of Rock Failure. Rock and Soil Mechanics, 40(1): 91-98 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201901006.htm
|
Tarasov, B., Potvin, Y., 2013. Universal Criteria for Rock Brittleness Estimation under Triaxial Compression. International Journal of Rock Mechanics and Mining Sciences, 59: 57-69. https://doi.org/10.1016/j.ijrmms.2012.12.011
|
Wen, T., Tang, H. M., Huang, L., et al., 2020. Energy Evolution: A New Perspective on the Failure Mechanism of Purplish-Red Mudstones from the Three Gorges Reservoir Area, China. Engineering Geology, 264: 105350. https://doi.org/10.1016/j.enggeo.2019.105350
|
Wen, T., Tang, H. M., Ma, J. W., et al., 2018. Evaluation of Methods for Determining Crack Initiation Stress under Compression. Engineering Geology, 235: 81-97. https://doi.org/10.1016/j.enggeo.2018.01.018
|
Wen, T., Tang, H. M., Ma, J. W., et al., 2019. Deformation Simulation for Rock in Consideration of Initial Damage and Residual Strength. Earth Science, 44(2): 652-663 (in Chinese with English abstract). http://www.researchgate.net/publication/332625403_Deformation_Simulation_for_Rock_in_Consideration_of_Initial_Damage_and_Residual_Strength
|
Zhang, J., Ai, C., Li, Y. W., et al., 2017. Brittleness evaluation index based on energy variation in the whole process of rock failure. Chinese Journal of Rock Mechanics and Engineering, 36(6): 1326-1340 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201706004.htm
|
Zhang, J., Ai, C., Li, Y. W., et al., 2018. Energy-Based Brittleness Index and Acoustic Emission Characteristics of Anisotropic Coal under Triaxial Stress Condition. Rock Mechanics and Rock Engineering, 51(11): 3343-3360. https://doi.org/10.1007/s00603-018-1535-9
|
Zhang, S., Tang, H. M., Liu, X., et al., 2018. Seepage and Instability Characteristics of Slope Based on Spatial Variation Structure of Saturated Hydraulic Conductivity. Earth Science, 43(2): 622-634 (in Chinese with English abstract).
|
Zhou, H., Meng, F. Z., Zhang, C. Q., et al., 2014. Quantitative Evaluation of Rock Brittleness Based on Stress-Strain Curve. Chinese Journal of Rock Mechanics and Engineering, 33(6): 1114-1122 (in Chinese with English abstract). http://www.researchgate.net/publication/312536550_Quantitative_evaluation_of_rock_brittleness_based_on_stress-strain_curve
|
付利, 申瑞臣, 庞飞, 等, 2019. 页岩剪切摩擦与非稳态滑移特性实验. 地球科学, 44(11): 3783-3793. doi: 10.3799/dqkx.2019.189
|
葛云峰, 周婷, 霍少磊, 等, 2019. 高速远程滑坡运动堆积过程中的能量传递机制. 地球科学, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589
|
侯振坤, 2018. 龙马溪组页岩水力压裂试验及裂缝延伸机理研究(博士学位论文). 重庆: 重庆大学.
|
亢金涛, 吴琼, 唐辉明, 等, 2019. 岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制. 地球科学, 44(11): 3950-3960. doi: 10.3799/dqkx.2019.110
|
宋洪强, 左建平, 陈岩, 等, 2019. 基于岩石破坏全过程能量特征改进的能量跌落系数. 岩土力学, 40(1): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901006.htm
|
温韬, 唐辉明, 马俊伟, 等, 2019. 考虑初始损伤和残余强度的岩石变形过程模拟. 地球科学, 44(2): 652-663. doi: 10.3799/dqkx.2018.212
|
张军, 艾池, 李玉伟, 等, 2017. 基于岩石破坏全过程能量演化的脆性评价指数. 岩石力学与工程学报, 36(6): 1326-1340. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201706004.htm
|
张抒, 唐辉明, 刘晓, 等, 2018. 基于饱和渗透系数空间变异结构的斜坡渗流及失稳特征. 地球科学, 43(2): 622-634. doi: 10.3799/dqkx.2017.617
|
周辉, 孟凡震, 张传庆, 等, 2014. 基于应力-应变曲线的岩石脆性特征定量评价方法. 岩石力学与工程学报, 33(6): 1114-1122. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201406004.htm
|