• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 9
    Oct.  2021
    Turn off MathJax
    Article Contents
    Dai Lei, Wang Guiling, He Yujiang, 2021. The Relationship between Soil Structure and Water Characteristics Based on Fractal Theory. Earth Science, 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345
    Citation: Dai Lei, Wang Guiling, He Yujiang, 2021. The Relationship between Soil Structure and Water Characteristics Based on Fractal Theory. Earth Science, 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345

    The Relationship between Soil Structure and Water Characteristics Based on Fractal Theory

    doi: 10.3799/dqkx.2020.345
    • Received Date: 2020-08-12
      Available Online: 2021-10-14
    • Publish Date: 2021-10-14
    • In order to understand the indicative effect of soil structure on its hydraulic properties, undisturbed soil samples from the Ziya-River basin in the North China plain were selected as the research objects. The soil water characteristic curve was measured by tension meter method, and the particle size distribution of soil samples was measured by laser particle size analyzer. The fractal dimension of soil particle size distribution was calculated based on fractal theory. Soil water characteristic curve was analyzed by experimental measurement and model verification. The fractal dimension of soil particle size distribution in the range of[10 μm, 50 μm] is the key parameter to characterize the characteristics of the significant rising section of soil particle size distribution, which is significantly correlated with the fitting parameters (a, b) of the power function model of soil water characteristic curve in the suction range of 0-80 kPa. The power function model expressed by the fractal form of soil water characteristic curve in the study area is: θ=100.78×(3-D)S(D-3)/3, and the fractal characteristics of soil structure can effectively indicate its hydraulic properties.

       

    • loading
    • Baliarda, C. P., Romeu, J., Cardama, A., 2000. The Koch Monopole: A Small Fractal Antenna. IEEE Transactions on Antennas and Propagation, 48(11): 1773-1781. https://doi.org/10.1109/8.900236
      Bird, N. R. A., Perrier, E., Rieu, M., 2000. The Water Retention Function for a Model of Soil Structure with Pore and Solid Fractal Distributions. European Journal of Soil Science, 51(1): 55-63. https://doi.org/10.1046/j.1365-2389.2000.00278.x
      Brady, N. C., Weil, R. R., 2008. The Nature and Properties of Soils, 14th Edition. Pearson Education, Inc., New Jersey.
      Cai, J. C., Hu, X. Y., 2015. Fractal Theory in Porous Media and Its Applications. Science Press, Beijing (in Chinese).
      Chakraborti, R. K., Gardner, K. H., Atkinson, J. F., et al., 2003. Changes in Fractal Dimension during Aggregation. Water Research, 37(4): 873-883. https://doi.org/10.1016/S0043-1354(02)00379-2
      Cheng, D. B., Cai, C. F., Peng, Y. P., et al., 2009. Estimating Soil Water Retention Curve Based on Fractal Dimension of Soil Particle Size Distribution of Purple Soil. Acta Pedologica Sinica, 46(1): 30-36 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/trxb200901005
      de Gennes, P. G., 1985. Partial Filling of a Fractal Structure by a Wetting Fluid. In: Adler, D., Fritzsche, H., Ovshinsky, S. R., eds., Physics of Disordered Materials. Springer, Boston. https://doi.org/10.1007/978-1-4613-2513-0_19
      Ding, Y. K., Rong, N., Shan, B. Q., 2016. Impact of Extreme Oxygen Consumption by Pollutants on Macroinvertebrate Assemblages in Plain Rivers of the Ziya River Basin, North China. Environmental Science and Pollution Research, 23(14): 14147-14156. https://doi.org/10.1007/s11356-016-6404-z
      Du, S. H., Shi, Y. M., Guan, P., 2019. Fluid Filling Rule in Intra-Granular Pores of Feldspar and Fractal Characteristics: A Case Study on Yanchang Formation Tight Sandstone Reservoir in Ordos Basin. Earth Science, 44(12): 4252-4263 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912035.htm
      Ersahin, S., Gunal, H., Kutlu, T., et al., 2006. Estimating Specific Surface Area and Cation Exchange Capacity in Soils Using Fractal Dimension of Particle-Size Distribution. Geoderma, 136(3-4): 588-597. https://doi.org/10.1016/j.geoderma.2006.04.014
      Fu, X. L., Shao, M. G., Lu, D. Q., et al., 2011. Soil Water Characteristic Curve Measurement without Bulk Density Changes and Its Implications in the Estimation of Soil Hydraulic Properties. Geoderma, 167-168: 1-8. https://doi.org/10.1016/j.geoderma.2011.08.012
      Gardner, W. R., Hillel, D., Benyamini, Y., 1970. Post-Irrigation Movement of Soil Water: 1. Redistribution. Water Resources Research, 6(3): 851-861. https://doi.org/10.1029/wr006i003p00851
      Hao, C., Liang, Y. Y., Meng, W. Q., et al., 2009. Relations between Plant Community Characteristic and Soil Physicochemical Factors in Natural Wetlands of Binhai New District, Tianjin. Wetland Science, 7(3): 266-272 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KXSD200903011.htm
      He, Y. J., Lin, W. J., Wang, G. L., 2013. In-Situ Monitoring on the Soil Water-Heat Movement of Deep Vadose Zone by TDR100 System. Journal of Jilin University (Earth Science Edition), 43(6): 1972-1979 (in Chinese with English abstract).
      Huang, G. H., Zhan, W. H., 2002. Modeling Soil Water Retention Curve with Fractal Theory. Advances in Water Science, 13(1): 55-60 (in Chinese with English abstract).
      Jin, T. X., Cai, X., Chen, Y., et al., 2019. A Fractal-Based Model for Soil Water Characteristic Curve over Entire Range of Water Content. Capillarity, 2(4): 66-75. https://doi.org/10.26804/capi.2019.04.02
      Lin, D., Jin, M. G., Ma, B., et al., 2014. Characteristics of Infiltration Recharge at Thickening Vadose Zone Using Soil Hydraulic Parameters. Earth Science, 39(6): 760-768 (in Chinese with English abstract). http://www.researchgate.net/publication/288539192_Characteristics_of_infiltration_recharge_at_thickening_vadose_zone_using_soil_hydraulic_parameters
      Ma, C. M., 2013. Experimental Instruction of Vadose Hydrology. China University of Geosciences Press, Wuhan (in Chinese).
      Mandelbrot, B. B., 1983. The Fractal Geometry of Nature (Revised and Enlarged Edition). WH Freeman and Co., New York.
      Nam, S., Gutierrez, M., Diplas, P., et al., 2010. Comparison of Testing Techniques and Models for Establishing the SWCC of Riverbank Soils. Engineering Geology, 110(1-2): 1-10. https://doi.org/10.1016/j.enggeo.2009.09.003
      Niu, H., Liang, X., Li, J., et al., 2016. Paleoclimate Instruction of Sediment Grain Size and Deuterium-Oxygen Isotope in Saline Stratum of Hengshui. Earth Science, 41(3): 499-507 (in Chinese with English abstract).
      Pachepsky, Y., Crawford, J. W., Rawls, W. J., 2000. Fractals in Soil Science. Elsevier, Amsterdam.
      Peng, H. T., Horton, R., Lei, T. W., et al., 2015. A Modified Method for Estimating Fine and Coarse Fractal Dimensions of Soil Particle Size Distributions Based on Laser Diffraction Analysis. Journal of Soils and Sediments, 15(4): 937-948. https://doi.org/10.1007/s11368-014-1044-8
      Phoon, K. K., Santoso, A., Quek, S. T., 2010. Probabilistic Analysis of Soil-Water Characteristic Curves. Journal of Geotechnical and Geoenvironmental Engineering, 136(3): 445-455. https://doi.org/10.1061/(asce)gt.1943-5606.0000222
      Rajesh, S., Roy, S., Madhav, S., 2017. Study of Measured and Fitted SWCC Accounting the Irregularity in the Measured Dataset. International Journal of Geotechnical Engineering, 11(4): 321-331. https://doi.org/10.1080/19386362.2016.1219541
      Rieu, M., Sposito, G., 1991. Fractal Fragmentation, Soil Porosity, and Soil Water Properties: I. Theory. Soil Science Society of America Journal, 55(5): 1231-1238. https://doi.org/10.2136/sssaj1991.03615995005500050006x
      Sillers, W. S., Fredlund, D. G., Zakerzaheh, N., 2001. Mathematical Attributes of Some Soil-Water Characteristic Curve Models. Geotechnical and Geological Engineering, 19: 243-283. doi: 10.1023/A:1013109728218
      Tyler, S. W., Wheatcraft, S. W., 1990. Fractal Processes in Soil Water Retention. Water Resources Research, 26(5): 1047-1054. https://doi.org/10.1029/wr026i005p01047
      Tyler, S. W., Wheatcraft, S. W., 1992. Fractal Scaling of Soil Particle-Size Distributions: Analysis and Limitations. Soil Science Society of America Journal, 56(2): 362-369. https://doi.org/10.2136/sssaj1992.03615995005600020005x
      Wang, Y. Y., He, Y. J., 2019. The Indicative Effect of Soil Fractal Structure on Its Hydraulic Properties. Earth Science Frontiers, 26(6): 66-74 (in Chinese with English abstract).
      Wei, Y., Wang, Y. Q., Han, J. C., et al., 2019. Analysis of Water Retention Characteristics of Oil-Polluted Earthy Materials with Different Textures Based on van Genuchten Model. Journal of Soils and Sediments, 19(1): 373-380. https://doi.org/10.1007/s11368-018-2026-z
      Xu, Y. F., Dong, P., 2004. Fractal Approach to Hydraulic Properties in Unsaturated Porous Media. Chaos, Solitons & Fractals, 19(2): 327-337. https://doi.org/10.1016/S0960-0779(03)00045-6
      Yang, X. X., Wang, X. L., Wang, J. P., et al., 2019. Spatial Variation Analysis of Soil Moisture and Salinity in Tianjin Binhai New Area. Science of Soil and Water Conservation, 17(3): 39-47 (in Chinese with English abstract).
      Zhang, C., Liu, Y. J., Zhang, Z. L., et al., 2019. Deformation and Geochronological Characteristics of Gudonghe Ductile Shear Zone in Yanbian Area. Earth Science, 44(10): 3252-3264 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910007.htm
      蔡建超, 胡祥云, 2015. 多孔介质分形理论与应用. 北京: 科学出版社.
      程冬兵, 蔡崇法, 彭艳平, 等, 2009. 根据土壤粒径分形估计紫色土水分特征曲线. 土壤学报, 46(1): 30-36. doi: 10.3321/j.issn:0564-3929.2009.01.005
      杜书恒, 师永民, 关平, 2019. 长石粒内孔流体充注规律及分形特征: 以鄂尔多斯盆地延长组致密砂岩储层为例. 地球科学, 44(12): 4252-4263. doi: 10.3799/dqkx.2018.199
      郝翠, 梁耀元, 孟伟庆, 等, 2009. 天津滨海新区自然湿地植物分布与土壤理化性质的关系. 湿地科学, 7(3): 266-272. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD200903011.htm
      何雨江, 蔺文静, 王贵玲, 2013. 利用TDR100系统原位监测深厚包气带水热动态. 吉林大学学报(地球科学版), 43(6): 1972-1979. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306029.htm
      黄冠华, 詹卫华, 2002. 土壤水分特性曲线的分形模拟. 水科学进展, 13(1): 55-60. doi: 10.3321/j.issn:1001-6791.2002.01.010
      林丹, 靳孟贵, 马斌, 等, 2014. 包气带增厚区土壤水力参数及其对入渗补给的影响. 地球科学, 39(6): 760-768. doi: 10.3799/dqkx.2014.071
      马传明, 2013. 包气带水文学实验指导. 武汉: 中国地质大学出版社.
      牛宏, 梁杏, 李静, 等, 2016. 衡水地区咸水层沉积物粒度及氘氧同位素的古气候指示. 地球科学, 41(3): 499-507. doi: 10.3799/dqkx.2016.041
      王艳艳, 何雨江, 2019. 土壤分形结构对其水力性质的指示作用. 地学前缘, 26(6): 66-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906012.htm
      杨晓潇, 王秀兰, 王计平, 等, 2019. 天津市滨海新区土壤水盐空间变异分析. 中国水土保持科学, 17(3): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201903006.htm
      张超, 刘永江, 张照录, 等, 2019. 延边地区古洞河韧性剪切带变形特征及变形时代. 地球科学, 44(10): 3252-3264. doi: 10.3799/dqkx.2016.041
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(4)

      Article views (2062) PDF downloads(126) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return