• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 9
    Oct.  2021
    Turn off MathJax
    Article Contents
    Chen Si, Zeng Min, Tian Jingchun, Ren Kefa, Jin Xiaoyu, Li Chenwei, 2021. Chamosite-Ooidal Limestones at the Bottom of Ordovician Pagoda Formation in the Southwestern Yangtze Platform: Genesis and Paleoenvironmental Implications. Earth Science, 46(9): 3107-3122. doi: 10.3799/dqkx.2020.346
    Citation: Chen Si, Zeng Min, Tian Jingchun, Ren Kefa, Jin Xiaoyu, Li Chenwei, 2021. Chamosite-Ooidal Limestones at the Bottom of Ordovician Pagoda Formation in the Southwestern Yangtze Platform: Genesis and Paleoenvironmental Implications. Earth Science, 46(9): 3107-3122. doi: 10.3799/dqkx.2020.346

    Chamosite-Ooidal Limestones at the Bottom of Ordovician Pagoda Formation in the Southwestern Yangtze Platform: Genesis and Paleoenvironmental Implications

    doi: 10.3799/dqkx.2020.346
    • Received Date: 2020-09-28
      Available Online: 2021-10-14
    • Publish Date: 2021-10-14
    • A set of the chamosite-ooidal limestones was discovered at the bottom of the Pagoda Formation (Upper Ordovician) in Xingwen County, Sichuan Province, and its genesis can facilitate the understanding the evolution of the depositional environment in the southwestern Yangtze platform during the same period. Based on a detailed sedimentological analysis, this paper presents a study on the genesis of the chamosite-ooidal limestones, combined with mineralogical characterization via electron microprobe and scanning electron microscope studies. It is found that chamosite-rich ooids and peloids are syngenetic sediments, and symbiotic bioclastic assemblages indicate that the seawater was oxidizing. The abundant microbial-related fabric indicates that microbial mats develop during the same period, and their metabolic activities can lead to the formation of reducing water bodies near the water-sediment interface, which is a necessary condition for the formation of syngenetic chamosite. The Fe and Al elements needed for chamosite formation are derived from large-scale inputs of the early weathering crust during the transgression stage. The chamosite-ooidal limestones at the bottom of the Pagoda Formation are the concrete manifestation of global sea-level evolution in the Yangtze platform at same time. It is an important indicator of sea level fall in the Early Sandbian and rapid transgression in the Late Sandbian in the Yangtze platform.

       

    • loading
    • Bhattacharyya, D. P., 1983. Origin of Berthierine in Ironstones. Clays and Clay Minerals, 31(3): 173-182. https://doi.org/10.1346/CCMN.1983.0310302
      Chen, X., Xu, J. T., Cheng, H. J., et al., 1990. On the Hannan Old Land and Dabashan Uplift. Journal of Stratigraphy, 14(2): 81-116 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ199002000.htm
      Chen, X., Zhou, Z. Y., Fan, J. X., 2010. Ordovician Paleogeography and Tectonics of the Major Paleoplates of China. Special Paper of the Geological Society of America, 466: 85-104. https://doi.org/10.1130/2010.2466(06)
      Clement, A. M., Tackett, L. S., Ritterbush, K. A., et al., 2020. Formation and Stratigraphic Facies Distribution of Early Jurassic Iron Oolite Deposits from West Central Nevada, USA. Sedimentary Geology, 395: 105537. https://doi.org/10.1016/j.sedgeo.2019.105537
      Damyanov, Z., Vassileva, M., 2001. Authigenic Phyllosilicates in the Middle Triassic Kremikovtsi Sedimentary Exhalative Siderite Iron Formation, Western Balkan, Bulgaria. Clays and Clay Minerals, 49(6): 559-585. https://doi.org/10.1346/CCMN.2001.0490607
      Dodd, M. S., Papineau, D., She, Z. B., et al., 2018. Organic Remains in Late Palaeoproterozoic Granular Iron Formations and Implications for the Origin of Granules. Precambrian Research, 310: 133-152. https://doi.org/10.1016/j.precamres.2018.02.016
      Fan, R., Lu, Y. Z., Zhang, X. L., et al., 2013. New Understanding of the Contact Relationship between Shihtzupu Formation and Pagoda Formation in Sichuan Basin. Acta Geologica Sinica, 87(3): 321-329 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201303004&dbcode=CJFD&year=2013&dflag=pdfdown
      Garcia-Frank, A., Ureta, S., Mas, R., 2012. Iron-Coated Particles from Condensed Aalenian-Bajocian Deposits: Evolutionary Model (Iberian Basin, Spain). Journal of Sedimentary Research, 82(12): 953-968. https://doi.org/10.2110/jsr.2012.75
      Gehring, A. U., 1989. The Formation of Goethitic Ooids in Condensed Jurassic Deposits in Northern Switzerland. Geological Society, London, Special Publications, 46(1): 133-139. https://doi.org/10.1144/gsl.sp.1989.046.01.13
      Han, K. B., 2019. Characteristics and Formation Mechanism of Oolitic Ironstones in Middle Jurassic Batonian Period, in Nyalam Area, Southern Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Harder, H., 1978. Synthesis of Iron Layer Silicate Minerals under Natural Conditions. Clays and Clay Minerals, 26(1): 65-72. https://doi.org/10.1346/CCMN.1978.0260108
      Harder, H., 1989. Mineral Genesis in Ironstones: A Model Based Upon Laboratory Experiments and Petrographic Observations. Geological Society, London, Special Publications, 46(1): 9-18. https://doi.org/10.1144/gsl.sp.1989.046.01.04
      Heller, P. L., Komar, P. D., Pevear, D. R., 1980. Transport Processes in Ooid Genesis. Journal of Sedimentary Research. 50(3): 943-951. https://doi.org/10.1306/212f7b2b-2b24-11d7-8648000102c1865d
      Jiang, Z. X., 2003. Sedimentary Petrology. Petroleum Industry Press, Beijing (in Chinese).
      Kimberley, M. M., 1974. Origin of Iron Ore by Diagenetic Replacement of Calcareous Oolite. Nature, 250(5464): 319-320. https://doi.org/10.1038/250319a0
      Lu, Y. B., Ma, Y. Q., Wang, Y. X., et al., 2017. The Sedimentary Response to the Major Geological Events and Lithofacies Characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze Area. Earth Science, 42(7): 1169-1184 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707012.htm
      Maynard, J. B., 1986. Geochemistry of Oolitic Iron Ores, an Electron Microprobe Study. Economic Geology, 81(6): 1473-1483. https://doi.org/10.2113/gsecongeo.81.6.1473
      Mei, M. X., 2011. Microbial-Mat Sedimentology: A Young Branch from Sedimentology. Advances in Earth Science, 26(6): 586-597 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201106003.htm
      Mücke, A., 2006. Chamosite, Siderite and the Environmental Conditions of Their Formation in Chamosite-Type Phanerozoic Ooidal Ironstones. Ore Geology Reviews, 28(2): 235-249. https://doi.org/10.1016/j.oregeorev.2005.03.004
      O'Reilly, S. S., Mariotti, G., Winter, A. R., et al., 2017. Molecular Biosignatures Reveal Common Benthic Microbial Sources of Organic Matter in Ooids and Grapestones from Pigeon Cay, the Bahamas. Geobiology, 15(1): 112-130. https://doi.org/10.1111/gbi.12196
      Qin, S., Zhang, T., Su, W. B., et al., 2011. Characteristics and Implications of the Oolitic Limestones from the Silurian Succession in Wangcang, Sichuan, South China. Earth Science, 36(1): 43-52 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201101006.htm
      Rahiminejad, A. H., Zand-Moghadam, H., 2018. Synsedimentary Formation of Ooidal Ironstone: an Example from the Jurassic Deposits of SE Central Iran. Ore Geology Reviews, 95: 238-257. https://doi.org/10.1016/j.oregeorev.2018.02.028
      Rayner, D. H., Hemingway, J. E., 1974. The Geology and Mineral Resources of Yorkshire. Yorkshire Geological Society, Leeds.
      Salama, W., El Aref, M., Gaupp, R., 2014. Facies Analysis and Palaeoclimatic Significance of Ironstones Formed during the Eocene Greenhouse. Sedimentology, 61(6): 1594-1624. https://doi.org/10.1111/sed.12106
      Scholle, P. A., Ulmer-Scholle, D. S., 2003. A Color Guide to the Petrography of Carbonate Rocks. American Association of Petroleum Geologists, McLean.
      Servais, T., Owen, A. W., Harper, D. A. T., et al., 2010. The Great Ordovician Biodiversification Event (GOBE): The Palaeoecological Dimension. Palaeogeography, Palaeoclimatology, Palaeoecology, 294(3-4): 99-119. https://doi.org/10.1016/j.palaeo.2010.05.031
      Sharma, S., Dix, G. R, 2004. Magnesian Calcite and Chamositic Ooids Forming Shoals Peripheral to Late Ordovician (Ashgill) Muddy Siliciclastic Shores: Southern Ontario. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(2-4): 347-366. https://doi.org/10.1016/j.palaeo.2004.02.036
      Shen, J. W., 1994. Sequential Position and Environment Significance of Chamositic Ooids and Glauconite in the Early Middle Ordovician Sediments in Guizhou Province and Adjacent Areas. Guzhou Geology, 11(3): 207-217 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDZ403.003.htm
      Siehl, A., Thein, J., 1989. Minette-Type Ironstones. Geological Society, London, Special Publications, 46(1): 175-193. https://doi.org/10.1144/gsl.sp.1989.046.01.16
      Song, W. T., Liu, J. B., 2020. A Review of Cortical Structures of Carbonate Ooids. Journal of Palaeogeography, 22(1): 147-160 (in Chinese with English abstract).
      Sturesson, U., Heikoop, J. M., Risk, M. J., 2000. Modern and Palaeozoic Iron Ooids-A Similar Volcanic Origin. Sedimentary Geology, 136(1-2): 137-146. https://doi.org/10.1016/S0037-0738(00)00091-9
      Su, W. B., Li, Z. M., Chen, J. Q., et al., 1999. A Reliable Example for Eustacy Ordovician Sequence Stratigraphy on the Southeastern Margin of the Upper Yangtze Platform. Acta Sedimentologica Sinica, 17(3): 345-353 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199903002.htm
      Tang, D. J., Shi, X. Y., Jiang, G. Q., et al., 2017. Ferruginous Seawater Facilitates the Transformation of Glauconite to Chamosite: An Example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist, 102(11): 2317-2332. https://doi.org/10.2138/am-2017-6136
      Taylor, K. G., Simo, J. A., Yocum, D., et al., 2002. Stratigraphic Significance of Ooidal Ironstones from the Cretaceous Western Interior Seaway: The Peace River Formation, Alberta, Canada, and the Castlegate Sandstone, Utah, USA. Journal of Sedimentary Research, 72(2): 316-327. https://doi.org/10.1306/060801720316
      Todd, S. E., Pufahl, P. K., Murphy, J. B., et al., 2019. Sedimentology and Oceanography of Early Ordovician Ironstone, Bell Island, Newfoundland: Ferruginous Seawater and Upwelling in the Rheic Ocean. Sedimentary Geology, 379: 1-15. https://doi.org/10.1016/j.sedgeo.2018.10.007
      Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
      van Houten, F. B., Bhattacharyya, D. P., 1982. Phanerozoic Oolitic Ironstones: Geologic Record and Facies Model. Annual Review of Earth and Planetary Sciences, 10(1): 441-457. https://doi.org/10.1146/annurev.ea.10.050182.002301
      van Houten, F. B., Purucker, M. E., 1984. Glauconitic Peloids and Chamositic Ooids-Favorable Factors, Constraints, and Problems. Earth-Science Reviews, 20(3): 211-243. https://doi.org/10.1016/0012-8252(84)90002-3
      Wang, H. Z., Shi, X. Y., 1998. Hierarchy of Depositional Sequences and Eustatic Cycles a Discussion on the Mechanism of Sedimentary Cycles. Geoscience, 12(1): 1-17 (in Chinese with English abstract).
      Wang, X. F., 2016. Ordovician Tectonic-Paleogeography in South China and Chrono- and Bio-Stratigraphic Division and Correlation. Earth Science Frontiers, 23(6): 253-267 (in Chinese with English abstract). http://www.researchgate.net/publication/316514996_Ordovician_tectonic-paleogeography_in_South_China_and_chrono-and_bio-stratigraphic_division_and_correlation
      Xu, X. S., Wan, F., Yin, F. G., et al., 2001. Environment Facies, Ecological Facies and Diagenetic Facies of Baota Formation, of Late Ordovina. Journal of Mineralogy and Petrology, 21(3): 64-68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWYS200103009.htm
      Young, T. P., 1989. Phanerozoic Ironstones: An Introduction and Review. Geological Society, London, Special Publications, 46(1): ⅸ-xxv. https://doi.org/10.1144/gsl.sp.1989.046.01.02
      陈旭, 徐均涛, 成汉钧, 等, 1990. 论汉南古陆及大巴山隆起. 地层学杂志, 14(2): 81-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ199002000.htm
      樊茹, 卢远征, 张学磊, 等, 2013. 四川盆地奥陶系十字铺组与宝塔组接触关系新认识. 地质学报, 87(3): 321-329. doi: 10.3969/j.issn.0001-5717.2013.03.003
      韩凯博, 2019. 藏南聂拉木地区中侏罗世巴通期铁鲕岩的特征及形成机制(硕士学位论文). 北京: 中国地质大学.
      姜在兴, 2003. 沉积岩石学. 北京:石油工业出版社.
      陆扬博, 马义权, 王雨轩, 等, 2017. 上扬子地区五峰组-龙马溪组主要地质事件及岩相沉积响应. 地球科学, 42(7): 1169-1184. doi: 10.3799/dqkx.2017.095
      梅冥相, 2011. 微生物席沉积学: 一个年轻的沉积学分支. 地球科学进展, 26(6): 586-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201106003.htm
      秦松, 张涛, 苏文博, 等, 2011. 四川旺苍志留系鲕粒灰岩特征及地质意义. 地球科学, 36(1): 43-52. doi: 10.3799/dqkx.2011.005
      沈健伟, 1994. 贵州及邻区中奥陶世早期沉积物中鲕绿泥石鲕和海绿石的时序位置和环境意义. 贵州地质, 11(3): 207-217. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ403.003.htm
      宋文天, 刘建波, 2020. 碳酸盐鲕粒包壳结构研究综述. 古地理学报, 22(1): 147-160. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202001009.htm
      苏文博, 李志明, 陈建强, 等, 1999. 海平面变化全球可比性的可靠例证: 上扬子地台东南缘奥陶纪层序地层及海平面变化研究. 沉积学报, 17(3): 345-353. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199903002.htm
      王鸿祯, 史晓颖, 1998. 沉积层序及海平面旋回的分类级别: 旋回周期的成因讨论. 现代地质, 12(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ801.000.htm
      汪啸风, 2016. 中国南方奥陶纪构造古地理及年代与生物地层的划分与对比. 地学前缘, 23(6): 253-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201606026.htm
      许效松, 万方, 尹福光, 等, 2001. 奥陶系宝塔组灰岩的环境相、生态相与成岩相. 矿物岩石, 21(3): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200103009.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(2)

      Article views (1457) PDF downloads(94) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return