Citation: | Chen Si, Zeng Min, Tian Jingchun, Ren Kefa, Jin Xiaoyu, Li Chenwei, 2021. Chamosite-Ooidal Limestones at the Bottom of Ordovician Pagoda Formation in the Southwestern Yangtze Platform: Genesis and Paleoenvironmental Implications. Earth Science, 46(9): 3107-3122. doi: 10.3799/dqkx.2020.346 |
Bhattacharyya, D. P., 1983. Origin of Berthierine in Ironstones. Clays and Clay Minerals, 31(3): 173-182. https://doi.org/10.1346/CCMN.1983.0310302
|
Chen, X., Xu, J. T., Cheng, H. J., et al., 1990. On the Hannan Old Land and Dabashan Uplift. Journal of Stratigraphy, 14(2): 81-116 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ199002000.htm
|
Chen, X., Zhou, Z. Y., Fan, J. X., 2010. Ordovician Paleogeography and Tectonics of the Major Paleoplates of China. Special Paper of the Geological Society of America, 466: 85-104. https://doi.org/10.1130/2010.2466(06)
|
Clement, A. M., Tackett, L. S., Ritterbush, K. A., et al., 2020. Formation and Stratigraphic Facies Distribution of Early Jurassic Iron Oolite Deposits from West Central Nevada, USA. Sedimentary Geology, 395: 105537. https://doi.org/10.1016/j.sedgeo.2019.105537
|
Damyanov, Z., Vassileva, M., 2001. Authigenic Phyllosilicates in the Middle Triassic Kremikovtsi Sedimentary Exhalative Siderite Iron Formation, Western Balkan, Bulgaria. Clays and Clay Minerals, 49(6): 559-585. https://doi.org/10.1346/CCMN.2001.0490607
|
Dodd, M. S., Papineau, D., She, Z. B., et al., 2018. Organic Remains in Late Palaeoproterozoic Granular Iron Formations and Implications for the Origin of Granules. Precambrian Research, 310: 133-152. https://doi.org/10.1016/j.precamres.2018.02.016
|
Fan, R., Lu, Y. Z., Zhang, X. L., et al., 2013. New Understanding of the Contact Relationship between Shihtzupu Formation and Pagoda Formation in Sichuan Basin. Acta Geologica Sinica, 87(3): 321-329 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201303004&dbcode=CJFD&year=2013&dflag=pdfdown
|
Garcia-Frank, A., Ureta, S., Mas, R., 2012. Iron-Coated Particles from Condensed Aalenian-Bajocian Deposits: Evolutionary Model (Iberian Basin, Spain). Journal of Sedimentary Research, 82(12): 953-968. https://doi.org/10.2110/jsr.2012.75
|
Gehring, A. U., 1989. The Formation of Goethitic Ooids in Condensed Jurassic Deposits in Northern Switzerland. Geological Society, London, Special Publications, 46(1): 133-139. https://doi.org/10.1144/gsl.sp.1989.046.01.13
|
Han, K. B., 2019. Characteristics and Formation Mechanism of Oolitic Ironstones in Middle Jurassic Batonian Period, in Nyalam Area, Southern Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Harder, H., 1978. Synthesis of Iron Layer Silicate Minerals under Natural Conditions. Clays and Clay Minerals, 26(1): 65-72. https://doi.org/10.1346/CCMN.1978.0260108
|
Harder, H., 1989. Mineral Genesis in Ironstones: A Model Based Upon Laboratory Experiments and Petrographic Observations. Geological Society, London, Special Publications, 46(1): 9-18. https://doi.org/10.1144/gsl.sp.1989.046.01.04
|
Heller, P. L., Komar, P. D., Pevear, D. R., 1980. Transport Processes in Ooid Genesis. Journal of Sedimentary Research. 50(3): 943-951. https://doi.org/10.1306/212f7b2b-2b24-11d7-8648000102c1865d
|
Jiang, Z. X., 2003. Sedimentary Petrology. Petroleum Industry Press, Beijing (in Chinese).
|
Kimberley, M. M., 1974. Origin of Iron Ore by Diagenetic Replacement of Calcareous Oolite. Nature, 250(5464): 319-320. https://doi.org/10.1038/250319a0
|
Lu, Y. B., Ma, Y. Q., Wang, Y. X., et al., 2017. The Sedimentary Response to the Major Geological Events and Lithofacies Characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze Area. Earth Science, 42(7): 1169-1184 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707012.htm
|
Maynard, J. B., 1986. Geochemistry of Oolitic Iron Ores, an Electron Microprobe Study. Economic Geology, 81(6): 1473-1483. https://doi.org/10.2113/gsecongeo.81.6.1473
|
Mei, M. X., 2011. Microbial-Mat Sedimentology: A Young Branch from Sedimentology. Advances in Earth Science, 26(6): 586-597 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201106003.htm
|
Mücke, A., 2006. Chamosite, Siderite and the Environmental Conditions of Their Formation in Chamosite-Type Phanerozoic Ooidal Ironstones. Ore Geology Reviews, 28(2): 235-249. https://doi.org/10.1016/j.oregeorev.2005.03.004
|
O'Reilly, S. S., Mariotti, G., Winter, A. R., et al., 2017. Molecular Biosignatures Reveal Common Benthic Microbial Sources of Organic Matter in Ooids and Grapestones from Pigeon Cay, the Bahamas. Geobiology, 15(1): 112-130. https://doi.org/10.1111/gbi.12196
|
Qin, S., Zhang, T., Su, W. B., et al., 2011. Characteristics and Implications of the Oolitic Limestones from the Silurian Succession in Wangcang, Sichuan, South China. Earth Science, 36(1): 43-52 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201101006.htm
|
Rahiminejad, A. H., Zand-Moghadam, H., 2018. Synsedimentary Formation of Ooidal Ironstone: an Example from the Jurassic Deposits of SE Central Iran. Ore Geology Reviews, 95: 238-257. https://doi.org/10.1016/j.oregeorev.2018.02.028
|
Rayner, D. H., Hemingway, J. E., 1974. The Geology and Mineral Resources of Yorkshire. Yorkshire Geological Society, Leeds.
|
Salama, W., El Aref, M., Gaupp, R., 2014. Facies Analysis and Palaeoclimatic Significance of Ironstones Formed during the Eocene Greenhouse. Sedimentology, 61(6): 1594-1624. https://doi.org/10.1111/sed.12106
|
Scholle, P. A., Ulmer-Scholle, D. S., 2003. A Color Guide to the Petrography of Carbonate Rocks. American Association of Petroleum Geologists, McLean.
|
Servais, T., Owen, A. W., Harper, D. A. T., et al., 2010. The Great Ordovician Biodiversification Event (GOBE): The Palaeoecological Dimension. Palaeogeography, Palaeoclimatology, Palaeoecology, 294(3-4): 99-119. https://doi.org/10.1016/j.palaeo.2010.05.031
|
Sharma, S., Dix, G. R, 2004. Magnesian Calcite and Chamositic Ooids Forming Shoals Peripheral to Late Ordovician (Ashgill) Muddy Siliciclastic Shores: Southern Ontario. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(2-4): 347-366. https://doi.org/10.1016/j.palaeo.2004.02.036
|
Shen, J. W., 1994. Sequential Position and Environment Significance of Chamositic Ooids and Glauconite in the Early Middle Ordovician Sediments in Guizhou Province and Adjacent Areas. Guzhou Geology, 11(3): 207-217 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDZ403.003.htm
|
Siehl, A., Thein, J., 1989. Minette-Type Ironstones. Geological Society, London, Special Publications, 46(1): 175-193. https://doi.org/10.1144/gsl.sp.1989.046.01.16
|
Song, W. T., Liu, J. B., 2020. A Review of Cortical Structures of Carbonate Ooids. Journal of Palaeogeography, 22(1): 147-160 (in Chinese with English abstract).
|
Sturesson, U., Heikoop, J. M., Risk, M. J., 2000. Modern and Palaeozoic Iron Ooids-A Similar Volcanic Origin. Sedimentary Geology, 136(1-2): 137-146. https://doi.org/10.1016/S0037-0738(00)00091-9
|
Su, W. B., Li, Z. M., Chen, J. Q., et al., 1999. A Reliable Example for Eustacy Ordovician Sequence Stratigraphy on the Southeastern Margin of the Upper Yangtze Platform. Acta Sedimentologica Sinica, 17(3): 345-353 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199903002.htm
|
Tang, D. J., Shi, X. Y., Jiang, G. Q., et al., 2017. Ferruginous Seawater Facilitates the Transformation of Glauconite to Chamosite: An Example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist, 102(11): 2317-2332. https://doi.org/10.2138/am-2017-6136
|
Taylor, K. G., Simo, J. A., Yocum, D., et al., 2002. Stratigraphic Significance of Ooidal Ironstones from the Cretaceous Western Interior Seaway: The Peace River Formation, Alberta, Canada, and the Castlegate Sandstone, Utah, USA. Journal of Sedimentary Research, 72(2): 316-327. https://doi.org/10.1306/060801720316
|
Todd, S. E., Pufahl, P. K., Murphy, J. B., et al., 2019. Sedimentology and Oceanography of Early Ordovician Ironstone, Bell Island, Newfoundland: Ferruginous Seawater and Upwelling in the Rheic Ocean. Sedimentary Geology, 379: 1-15. https://doi.org/10.1016/j.sedgeo.2018.10.007
|
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
|
van Houten, F. B., Bhattacharyya, D. P., 1982. Phanerozoic Oolitic Ironstones: Geologic Record and Facies Model. Annual Review of Earth and Planetary Sciences, 10(1): 441-457. https://doi.org/10.1146/annurev.ea.10.050182.002301
|
van Houten, F. B., Purucker, M. E., 1984. Glauconitic Peloids and Chamositic Ooids-Favorable Factors, Constraints, and Problems. Earth-Science Reviews, 20(3): 211-243. https://doi.org/10.1016/0012-8252(84)90002-3
|
Wang, H. Z., Shi, X. Y., 1998. Hierarchy of Depositional Sequences and Eustatic Cycles a Discussion on the Mechanism of Sedimentary Cycles. Geoscience, 12(1): 1-17 (in Chinese with English abstract).
|
Wang, X. F., 2016. Ordovician Tectonic-Paleogeography in South China and Chrono- and Bio-Stratigraphic Division and Correlation. Earth Science Frontiers, 23(6): 253-267 (in Chinese with English abstract). http://www.researchgate.net/publication/316514996_Ordovician_tectonic-paleogeography_in_South_China_and_chrono-and_bio-stratigraphic_division_and_correlation
|
Xu, X. S., Wan, F., Yin, F. G., et al., 2001. Environment Facies, Ecological Facies and Diagenetic Facies of Baota Formation, of Late Ordovina. Journal of Mineralogy and Petrology, 21(3): 64-68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWYS200103009.htm
|
Young, T. P., 1989. Phanerozoic Ironstones: An Introduction and Review. Geological Society, London, Special Publications, 46(1): ⅸ-xxv. https://doi.org/10.1144/gsl.sp.1989.046.01.02
|
陈旭, 徐均涛, 成汉钧, 等, 1990. 论汉南古陆及大巴山隆起. 地层学杂志, 14(2): 81-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ199002000.htm
|
樊茹, 卢远征, 张学磊, 等, 2013. 四川盆地奥陶系十字铺组与宝塔组接触关系新认识. 地质学报, 87(3): 321-329. doi: 10.3969/j.issn.0001-5717.2013.03.003
|
韩凯博, 2019. 藏南聂拉木地区中侏罗世巴通期铁鲕岩的特征及形成机制(硕士学位论文). 北京: 中国地质大学.
|
姜在兴, 2003. 沉积岩石学. 北京:石油工业出版社.
|
陆扬博, 马义权, 王雨轩, 等, 2017. 上扬子地区五峰组-龙马溪组主要地质事件及岩相沉积响应. 地球科学, 42(7): 1169-1184. doi: 10.3799/dqkx.2017.095
|
梅冥相, 2011. 微生物席沉积学: 一个年轻的沉积学分支. 地球科学进展, 26(6): 586-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201106003.htm
|
秦松, 张涛, 苏文博, 等, 2011. 四川旺苍志留系鲕粒灰岩特征及地质意义. 地球科学, 36(1): 43-52. doi: 10.3799/dqkx.2011.005
|
沈健伟, 1994. 贵州及邻区中奥陶世早期沉积物中鲕绿泥石鲕和海绿石的时序位置和环境意义. 贵州地质, 11(3): 207-217. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ403.003.htm
|
宋文天, 刘建波, 2020. 碳酸盐鲕粒包壳结构研究综述. 古地理学报, 22(1): 147-160. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202001009.htm
|
苏文博, 李志明, 陈建强, 等, 1999. 海平面变化全球可比性的可靠例证: 上扬子地台东南缘奥陶纪层序地层及海平面变化研究. 沉积学报, 17(3): 345-353. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199903002.htm
|
王鸿祯, 史晓颖, 1998. 沉积层序及海平面旋回的分类级别: 旋回周期的成因讨论. 现代地质, 12(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ801.000.htm
|
汪啸风, 2016. 中国南方奥陶纪构造古地理及年代与生物地层的划分与对比. 地学前缘, 23(6): 253-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201606026.htm
|
许效松, 万方, 尹福光, 等, 2001. 奥陶系宝塔组灰岩的环境相、生态相与成岩相. 矿物岩石, 21(3): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200103009.htm
|