Citation: | Fan Jianjun, Li Cai, Niu Yaoling, Xie Chaoming, Wang Ming, 2021. Identification Method and Geological Significance of Intraplate Ocean Island-Seamount Fragments in Orogenic Belt. Earth Science, 46(2): 381-404. doi: 10.3799/dqkx.2020.348 |
Ancochea, E., Hernán, F., Huertas, M. J., et al., 2012. A Basic Radial Dike Swarm of Boa Vista (Cape Verde Archipelago): Its Significance in the Evolution of the Island. Journal of Volcanology and Geothermal Research, 243-244: 24-37. https://doi.org/10.1016/j.jvolgeores.2012.06.029
|
Ancochea, E., Huertas, M. J., Hernán, F., et al., 2014. A New Felsic Cone-Sheet Swarm in the Central Atlantic Islands: The Cone-Sheet Swarm of Boa Vista (Cape Verde). Journal of Volcanology and Geothermal Research, 274: 1-15. https://doi.org/10.1016/j.jvolgeores.2014.01.010
|
Bao, P. S., Xiao, X. C., Su, L., et al., 2007. Tectonic Setting of Dongcuo Ophiolite in Tibet: Petrology, Geochemistry Chemical and Chronological Constraints. Scientia Sinica Terrae, 37(3): 298-307(in Chinese).
|
Barker, A. K., Holm, P. M., Peate, D. W., et al., 2009. Geochemical Stratigraphy of Submarine Lavas (3-5 Ma) from the Flamengos Valley, Santiago, Southern Cape Verde Islands. Journal of Petrology, 50(1): 169-193. https://doi.org/10.1093/petrology/egn081
|
Beier, C., Haase, K. M., Hansteen, T. H., 2006. Magma Evolution of the Sete Cidades Volcano, Sã o Miguel, Azores. Journal of Petrology, 47(7): 1375-1411. https://doi.org/10.1093/petrology/egl014
|
Beier, C., Stracke, A., Haase, K. M., 2007. The Peculiar Geochemical Signatures of Sã o Miguel (Azores) Lavas: Metasomatised or Recycled Mantle Sources? Earth and Planetary Science Letters, 259(1-2): 186-199. https://doi.org/10.1016/j.epsl.2007.04.038
|
Bonneville, A., Suavé, R. L., Audin, L., et al., 2002. Arago Seamount: The Missing Hotspot Found in the Austral Islands. Geology, 30(11): 1023-1026. https://doi.org/10.1130/0091-7613(2002)0301023:astmhf>2.0.co;2 doi: 10.1130/0091-7613(2002)0301023:astmhf>2.0.co;2
|
Caroff, M., Maury, R. C., Leterrier, J., et al., 1993. Trace Element Behavior in the Alkali Basalt-Comenditic Trachyte Series from Mururoa Atoll, French Polynesia. Lithos, 30(1): 1-22. https://doi.org/10.1016/0024-4937(93)90002-t
|
Caroff, M., Maury, R. C., Guille, G., et al., 1997. Partial Melting below Tubuai (Austral Islands, French Polynesia). Contributions to Mineralogy and Petrology, 127(4): 369-382. https://doi.org/10.1007/s004100050286
|
Courtillot, V., Davaille, A., Besse, J., et al., 2003. Three Distinct Types of Hotspots in the Earth's Mantle. Earth and Planetary Science Letters, 205(3-4): 295-308. https://doi.org/10.1016/s0012-821x(02)01048-8
|
Cousens, B. L., Clague, D. A., Sharp, W. D., 2003. Chronology, Chemistry, and Origin of Trachytes from Hualalai Volcano, Hawaii. Geochemistry, Geophysics, Geosystems, 4(9): 1-27. https://doi.org/10.1029/2003gc000560
|
Detrick, R. S., Crough, S. T., 1978. Island Subsidence, Hot Spots, and Lithospheric Thinning. Journal of Geophysical Research: Solid Earth, 83(B3): 1236-1244. https://doi.org/10.1029/jb083iB03p01236
|
Dobretsov, N. L., Buslov, M. M., Yu, U., 2004. Fragments of Oceanic Islands in Accretion-Collision Areas of Gorny Altai and Salair, Southern Siberia, Russia: Early Stages of Continental Crustal Growth of the Siberian Continent in Vendian-Early Cambrian Time. Journal of Asian Earth Sciences, 23(5): 673-690. https://doi.org/10.1016/s1367-9120(03)00132-9
|
Dominguez, S., Lallemand, S. E., Malavieille, J., et al., 1998. Upper Plate Deformation Associated with Seamount Subduction. Tectonophysics, 293(3-4): 207-224. https://doi.org/10.1016/s0040-1951(98)00086-9
|
Dyhr, C. T., Holm, P. M., 2010. A Volcanological and Geochemical Investigation of Boa Vista, Cape Verde Islands; 40Ar/39Ar Geochronology and Field Constraints. Journal of Volcanology and Geothermal Research, 189(1-2): 19-32. https://doi.org/10.1016/j.jvolgeores.2009.10.010
|
Eisele, S., Freundt, A., Kutterolf, S., et al., 2015. Stratigraphy of the Pleistocene, Phonolitic Cã o Grande Formation on Santo Antã o, Cape Verde. Journal of Volcanology and Geothermal Research, 301: 204-220. https://doi.org/10.1016/j.jvolgeores.2015.03.012
|
Eisele, S., Freundt, A., Kutterolf, S., et al., 2016. Evolution of Magma Chambers Generating the Phonolitic Cã o Grande Formation on Santo Antã o, Cape Verde Archipelago. Journal of Volcanology and Geothermal Research, 327: 436-448. https://doi.org/10.1016/j.jvolgeores.2016.09.016
|
Elliott, T., Blichert-Toft, J., Heumann, A., et al., 2007. The Origin of Enriched Mantle beneath Sã o Miguel, Azores. Geochimica et Cosmochimica Acta, 71(1): 219-240. https://doi.org/10.1016/j.gca.2006.07.043
|
Fan, J. J., Li, C., Liu, J. H., et al., 2018a. The Middle Triassic Evolution of the Bangong-Nujiang Tethyan Ocean: Evidence from Analyses of OIB-Type Basalts and OIB-Derived Phonolites in Northern Tibet. International Journal of Earth Sciences, 107(5): 1755-1775. https://doi.org/10.1007/s00531-017-1570-x
|
Fan, J. J., Li, C., Wang, M., et al., 2018b. Reconstructing in Space and Time the Closure of the Middle and Western Segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau. International Journal of Earth Sciences, 107(1): 231-249. https://doi.org/10.1007/s00531-017-1487-4
|
Fan, J. J., Li, C., Wang, M., et al., 2017. Remnants of a Late Triassic Ocean Island in the Gufeng Area, Northern Tibet: Implications for the Opening and Early Evolution of the Bangong-Nujiang Tethyan Ocean. Journal of Asian Earth Sciences, 135: 35-50. https://doi.org/10.1016/j.jseaes.2016.12.015
|
Fan, J. J., Li, C., Xie, C. M., et al., 2014. Petrology, Geochemistry, and Geochronology of the Zhonggang Ocean Island, Northern Tibet: Implications for the Evolution of the Banggongco-Nujiang Oceanic Arm of the Neo-Tethys. International Geology Review, 56(12): 1504-1520. https://doi.org/10.1080/00206814.2014.947639
|
Fan, J. J., Li, C., Xie, C. M., et al., 2015. Petrology and U-Pb Zircon Geochronology of Bimodal Volcanic Rocks from the Maierze Group, Northern Tibet: Constraints on the Timing of Closure of the Banggong-Nujiang Ocean. Lithos, 227: 148-160. https://doi.org/10.1016/j.lithos.2015.03.021
|
Fan, J. J., Niu, Y., Liu, Y. M., et al., 2021. Timing of Closure of the Meso-Tethys Ocean: Constraints from Remnants of a 141-135 Ma Ocean Island within the Bangong-Nujiang Suture Zone, Tibetan Plateau. GSA Bulletin, in Press. https://doi.org/10.1130/b35896.1
|
Fan, J. J., Zhang, B. C., Liu, H. Y., et al., 2019. Early-Middle Jurassic Intra-Oceanic Subduction of the Bangong-Nujiang Oceanic Lithosphere: Evidence of the Dong Co Ophiolite. Acta Petrologica Sinica, 35(10): 3048-3064(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.06
|
Feraud, G., Gastaud, J., Schmincke, H. U., et al., 1981. New K-Ar Ages, Chemical Analyses and Magnetic Data of Rocks from the Islands of Santa Maria (Azores), Porto Santo and Madeira (Madeira Archipelago) and Gran Canaria (Canary Islands). Bulletin Volcanologique, 44(3): 359-375. https://doi.org/10.1007/bf02600570
|
Fletcher, M., Wyman, D. A., 2015. Mantle Plume-Subduction Zone Interactions over the Past 60 Ma. Lithos, 233: 162-173. https://doi.org/10.1016/j.lithos.2015.06.026
|
Forsyth, D., Uyeda, S., 1975. On the Relative Importance of the Driving Forces of Plate Motion. Geophysical Journal International, 43(1): 163-200. https://doi.org/10.1111/j.1365-246X.1975.tb00631.x
|
French, S. W., Romanowicz, B., 2015. Broad Plumes Rooted at the Base of the Earth's Mantle beneath Major Hotspots. Nature, 525(7567): 95-99. https://doi.org/10.1038/nature14876
|
Freundt, A., Schmincke, H. U., 1995. Petrogenesis of Rhyolite-Trachyte-Basalt Composite Ignimbrite P1, Gran Canada, Canary Islands. Journal of Geophysical Research: Solid Earth, 100(B1): 455-474. https://doi.org/10.1029/94jb02478
|
Frey, F. A., Coffin, M. F., Wallace, P. J., et al., 2000. Origin and Evolution of a Submarine Large Igneous Province: The Kerguelen Plateau and Broken Ridge, Southern Indian Ocean. Earth and Planetary Science Letters, 176(1): 73-89. https://doi.org/10.1016/s0012-821x(99)00315-5
|
Frey, F. A., Weis, D., Borisova, A. Y., et al., 2002. Involvement of Continental Crust in the Formation of the Cretaceous Kerguelen Plateau: New Perspectives from ODP Leg 120 Sites. Journal of Petrology, 43(7): 1207-1239. https://doi.org/10.1093/petrology/43.7.1207
|
Frey, F. A., Wise, W. S., Garcia, M. O., et al., 1990. Evolution of Mauna Kea Volcano, Hawaii: Petrologic and Geochemical Constraints on Postshield Volcanism. Journal of Geophysical Research Atmospheres, 95(B2): 1271-1300. https://doi.org/10.1029/jb095ib02p01271
|
Garapić, G., Jackson, M. G., Hauri, E. H., et al., 2015. A Radiogenic Isotopic (He-Sr-Nd-Pb-Os) Study of Lavas from the Pitcairn Hotspot: Implications for the Origin of EM-1(Enriched Mantle 1). Lithos, 228-229: 1-11. https://doi.org/10.1016/j.lithos.2015.04.010
|
Garcia, M. O., Swinnard, L., Weis, D., et al., 2010. Petrology, Geochemistry and Geochronology of Kaua'I Lavas over 4.5 Myr: Implications for the Origin of Rejuvenated Volcanism and the Evolution of the Hawaiian Plume. Journal of Petrology, 51(7): 1507-1540. https://doi.org/10.1093/petrology/egq027
|
Garcia, M. O., Weis, D., Jicha, B. R., et al., 2016. Petrology and Geochronology of Lavas from Ka'Ula Volcano: Implications for Rejuvenated Volcanism of the Hawaiian Mantle Plume. Geochimica et Cosmochimica Acta, 185: 278-301. https://doi.org/10.1016/j.gca.2016.03.025
|
Gazel, E., Hoernle, K., Carr, M. J., et al., 2011. Plume-Subduction Interaction in Southern Central America: Mantle Upwelling and Slab Melting. Lithos, 121(1-4): 117-134. https://doi.org/10.1016/j.lithos.2010.10.008
|
Geldmacher, J., Hoernle, K., van den Bogaard, P., et al., 2001. Earlier History of the ≥ 70 Ma-Old Canary Hotspot Based on the Temporal and Geochemical Evolution of the Selvagen Archipelago and Neighboring Seamounts in the Eastern North Atlantic. Journal of Volcanology and Geothermal Research, 111(1-4): 55-87. https://doi.org/10.1016/s0377-0273(01)00220-7
|
Gill, J., Whelan, P., 1989. Postsubduction Ocean Island Alkali Basalts in Fiji. Journal of Geophysical Research: Solid Earth, 94(B4): 4579-4588. https://doi.org/10.1029/jb094ib04p04579
|
Grigg, R. W., 1982. Darwin Point: A Threshold for Atoll Formation. Coral Reefs, 1(1): 29-34. https://doi.org/10.1007/bf00286537
|
Gunnarsson, B., Marsh, B. D., Jr Taylor, H. P., 1998. Generation of Icelandic Rhyolites: Silicic Lavas from the Torfajö kull Central Volcano. Journal of Volcanology and Geothermal Research, 83(1-2): 1-45. https://doi.org/10.1016/s0377-0273(98)00017-1
|
Haase, K. M., Beier, C., Kemner, F., 2019. A Comparison of the Magmatic Evolution of Pacific Intraplate Volcanoes: Constraints on Melting in Mantle Plumes. Frontiers in Earth Science, 6: 242. https://doi.org/10.3389/feart.2018.00242
|
Haase, K. M., Stoffers, P., Garbe-Schö nberg, C. D., 1997. The Petrogenetic Evolution of Lavas from Easter Island and Neighbouring Seamounts, Near-Ridge Hotspot Volcanoes in the SE Pacific. Journal of Petrology, 38(6): 785-813. https://doi.org/10.1093/petroj/38.6.785
|
Hanan, B. B., Blichert-Toft, J., Pyle, D. G., et al., 2004. Correction: Corrigendum: Contrasting Origins of the Upper Mantle Revealed by Hafnium and Lead Isotopes from the Southeast Indian Ridge. Nature, 432(7017): 91-94. https://doi.org/10.1038/nature03181
|
Hao, L. L., Wang, Q., Wyman, D. A., et al., 2016. Andesitic Crustal Growth via Mélange Partial Melting: Evidence from Early Cretaceous Arc Dioritic/Andesitic Rocks in Southern Qiangtang, Central Tibet. Geochemistry, Geophysics, Geosystems, 17(5): 1641-1659. https://doi.org/10.1002/2016gc006248
|
Hao, L. L., Wang, Q., Zhang, C. F., et al., 2019. Oceanic Plateau Subduction during Closure of the Bangong-Nujiang Tethyan Ocean: Insights from Central Tibetan Volcanic Rocks. GSA Bulletin, 131(5-6): 864-880. https://doi.org/10.1130/b32045.1
|
Harrison, L. N., Weis, D., Garcia, M. O., 2020. The Multiple Depleted Mantle Components in the Hawaiian-Emperor Chain. Chemical Geology, 532: 119324. https://doi.org/10.1016/j.chemgeo.2019.119324
|
Hassler, D. R., Shimizu, N., 1998. Osmium Isotopic Evidence for Ancient Subcontinental Lithospheric Mantle beneath the Kerguelen Islands, Southern Indian Ocean. Science, 280(5362): 418-421. https://doi.org/10.1126/science.280.5362.418
|
Hoernle, K., Rohde, J., Hauff, F., et al., 2015. How and When Plume Zonation Appeared during the 132 Myr Evolution of the Tristan Hotspot. Nature Communications, 6: 7799. https://doi.org/10.1038/ncomms8799
|
Holm, P. M., Wilson, J. R., Christensen, B. P., et al., 2006. Sampling the Cape Verde Mantle Plume: Evolution of Melt Compositions on Santo Antã o, Cape Verde Islands. Journal of Petrology, 47(1): 145-189. https://doi.org/10.1093/petrology/egi071
|
Hu, Y., Niu, Y. L., Li, J. Y., et al., 2016. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245: 205-222. https://doi.org/10.1016/j.lithos.2015.05.004
|
Huang, Q. T., Liu, W. L., Xia, B., et al., 2017. Petrogenesis of the Majiari Ophiolite (Western Tibet, China): Implications for Intra-Oceanic Subduction in the Bangong-Nujiang Tethys. Journal of Asian Earth Sciences, 146: 337-351. https://doi.org/10.1016/j.jseaes.2017.06.008
|
Humphreys, E. R., Niu, Y. L., 2009. On the Composition of Ocean Island Basalts (OIB): The Effects of Lithospheric Thickness Variation and Mantle Metasomatism. Lithos, 112(1-2): 118-136. https://doi.org/10.1016/j.lithos.2009.04.038
|
Jeffery, A. J., Gertisser, R., 2018. Peralkaline Felsic Magmatism of the Atlantic Islands. Frontiers in Earth Science, 6: 145. https://doi.org/10.3389/feart.2018.00145
|
Kusky, T. M., Windley, B. F., Safonova, I., et al., 2013. Recognition of Ocean Plate Stratigraphy in Accretionary Orogens through Earth History: A Record of 3.8 Billion Years of Sea Floor Spreading, Subduction, and Accretion. Gondwana Research, 24(2): 501-547. https://doi.org/10.1016/j.gr.2013.01.004
|
Lallemand, S., Culotta, R., von Huene, R., 1989. Subduction of the Daiichi Kashima Seamount in the Japan Trench. Tectonophysics, 160(1-4): 231-247. https://doi.org/10.1016/0040-1951(89)90393-4
|
Laursen, J., Scholl, D. W., von Huene, R., 2002. Neotectonic Deformation of the Central Chile Margin: Deepwater Forearc Basin Formation in Response to Hot Spot Ridge and Seamount Subduction. Tectonics, 21(5): 2-1-2-27. https://doi.org/10.1029/2001tc901023
|
le Roex, A. P., Cliff, R. A., Adair, B. J. I., 1990. Tristan Da Cunha, South Atlantic: Geochemistry and Petrogenesis of a Basanite-Phonolite Lava Series. Journal of Petrology, 31(4): 779-812. https://doi.org/10.1093/petrology/31.4.779
|
Lee, C., Lim, C., 2014. Short-Term and Localized Plume-Slab Interaction Explains the Genesis of Abukuma Adakite in Northeastern Japan. Earth and Planetary Science Letters, 396: 116-124. https://doi.org/10.1016/j.epsl.2014.04.009
|
Legendre, C., Maury, R. C., Caroff, M., et al., 2005. Origin of Exceptionally Abundant Phonolites on Ua Pou Island (Marquesas, French Polynesia): Partial Melting of Basanites Followed by Crustal Contamination. Journal of Petrology, 46(9): 1925-1962. https://doi.org/10.1093/petrology/egi043
|
Li, S., Yin, C. Q., Guilmette, C., et al., 2019. Birth and Demise of the Bangong-Nujiang Tethyan Ocean: A Review from the Gerze Area of Central Tibet. Earth-Science Reviews, 198: 102907. https://doi.org/10.1016/j.earscirev.2019.102907
|
Li, S. M., Zhu, D. C., Wang, Q., et al., 2016. Slab-Derived Adakites and Subslab Asthenosphere-Derived OIB-Type Rocks at 156±2 Ma from the North of Gerze, Central Tibet: Records of the Bangong-Nujiang Oceanic Ridge Subduction during the Late Jurassic. Lithos, 262: 456-469. https://doi.org/10.1016/j.lithos.2016.07.029
|
Liu, W. L., Xia, B., Zhong, Y., et al., 2014. Age and Composition of the Rebang Co and Julu Ophiolites, Central Tibet: Implications for the Evolution of the Bangong Meso-Tethys. International Geology Review, 56(4): 430-447. https://doi.org/10.1080/00206814.2013.873356
|
Ma, A. L., Hu, X. M., Garzanti, E., et al., 2017. Sedimentary and Tectonic Evolution of the Southern Qiangtang Basin: Implications for the Lhasa-Qiangtang Collision Timing. Journal of Geophysical Research: Solid Earth, 122(7): 4790-4813. https://doi.org/10.1002/2017jb014211
|
Madureira, P., Mata, J. O., Mattielli, N., et al., 2011. Mantle Source Heterogeneity, Magma Generation and Magmatic Evolution at Terceira Island (Azores Archipelago): Constraints from Elemental and Isotopic (Sr, Nd, Hf, and Pb) Data. Lithos, 126(3-4): 402-418. https://doi.org/10.1016/j.lithos.2011.07.002
|
Mahoney, J. J., Frei, R., Tejada, M. L. G., et al., 1998. Tracing the Indian Ocean Mantle Domain through Time: Isotopic Results from Old West Indian, East Tethyan, and South Pacific Seafloor. Journal of Petrology, 39(7): 1285-1306. https://doi.org/10.1093/petroj/39.7.1285
|
Mahoney, J. J., Jones, W. B., Frey, F. A., et al., 1995. Geochemical Characteristics of Lavas from Broken Ridge, the Naturaliste Plateau and Southernmost Kerguelen Plateau: Cretaceous Plateau Volcanism in the Southeast Indian Ocean. Chemical Geology, 120(3-4): 315-345. https://doi.org/10.1016/0009-2541(94)00144-w
|
Martins, S., Mata, J., Munhá, J., et al., 2010. Chemical and Mineralogical Evidence of the Occurrence of Mantle Metasomatism by Carbonate-Rich Melts in an Oceanic Environment (Santiago Island, Cape Verde). Mineralogy and Petrology, 99(1-2): 43-65. https://doi.org/10.1007/s00710-009-0078-x
|
Masson, D. G., Parson, L. M., Milsom, J., et al., 1990. Subduction of Seamounts at the Java Trench: A View with Long-Range Sidescan Sonar. Tectonophysics, 185(1-2): 51-65. https://doi.org/10.1016/0040-1951(90)90404-v
|
Mata, J., Martins, S., Mattielli, N., et al., 2017. The 2014-15 Eruption and the Short-Term Geochemical Evolution of the Fogo Volcano (Cape Verde): Evidence for Small-Scale Mantle Heterogeneity. Lithos, 288-289: 91-107. https://doi.org/10.1016/j.lithos.2017.07.001
|
Menard, H., Ladd, H., 1963. Oceanic Islands, Seamounts, Guyots and Atolls. The Sea, 3: 365-385. http://www.researchgate.net/publication/284632462_Oceanic_islands_seamounts_guyots_and_atolls/download
|
Menard, H. W., 1983. Insular Erosion, Isostasy, and Subsidence. Science, 220(4600): 913-918. https://doi.org/10.1126/science.220.4600.913
|
Meyzen, C. M., Ludden, J. N., Humler, E., et al., 2005. New Insights into the Origin and Distribution of the DUPAL Isotope Anomaly in the Indian Ocean Mantle from MORB of the Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 6(11): Q11K11. https://doi.org/10.1029/2005gc000979
|
Moine, B. N., Grégoire, M., O'Reilly, S. Y., et al., 2004. Carbonatite Melt in Oceanic Upper Mantle beneath the Kerguelen Archipelago. Lithos, 75(1-2): 239-252. https://doi.org/10.1016/j.lithos.2003.12.019
|
Morgan, J. P., Morgan, W. J., Price, E., 1995. Hotspot Melting Generates both Hotspot Volcanism and a Hotspot Swell? Journal of Geophysical Research: Solid Earth, 100(B5): 8045-8062. https://doi.org/10.1029/94jb02887
|
Mourã o, C., Mata, J., Doucelance, R., et al., 2012. Geochemical Temporal Evolution of Brava Island Magmatism: Constraints on the Variability of Cape Verde Mantle Sources and on Carbonatite-Silicate Magma Link. Chemical Geology, 334: 44-61. https://doi.org/10.1016/j.chemgeo.2012.09.031
|
Mungall, J. E., Martin, R. F., 1995. Petrogenesis of Basalt-Comendite and Basalt-Pantellerite Suites, Terceira, Azores, and Some Implications for the Origin of Ocean-Island Rhyolites. Contributions to Mineralogy and Petrology, 119(1): 43-55. https://doi.org/10.1007/bf00310716
|
Niu, Y. L., 2010. Some Basic Concepts and Problems on the Petrogenesis of Intra-Plate Ocean Island Basalts. Chinese Science Bulletin, 55(2): 103-114(in Chinese). doi: 10.1360/csb2010-55-2-103
|
Niu, Y. L., 2013. Global Tectonics and Geodynamics: Application Examples of Petrological and Geochemical Approaches. Science Press, Beijing (in Chinese).
|
Niu, Y. L., 2018. Geological Understanding of Plate Tectonics: Basic Concepts, Illustrations, Examples and New Perspectives. Global Tectonics and Metallogeny, 10(1): 23-46. https://doi.org/10.1127/gtm/2014/0009
|
Niu, Y. L., 2020. On the Cause of Continental Breakup: A Simple Analysis in Terms of Driving Mechanisms of Plate Tectonics and Mantle Plumes. Journal of Asian Earth Sciences, 194: 104367. https://doi.org/10.1016/j.jseaes.2020.104367
|
Niu, Y. L., Green, D. H., 2018. The Petrological Control on the Lithosphere-Asthenosphere Boundary (LAB) beneath Ocean Basins. Earth-Science Reviews, 185: 301-307. https://doi.org/10.1016/j.earscirev.2018.06.011
|
Niu, Y. L., O'Hara, M. J., Pearce, J. A., 2003. Initiation of Subduction Zones as a Consequence of Lateral Compositional Buoyancy Contrast within the Lithosphere: A Petrological Perspective. Journal of Petrology, 44(5): 851-866. https://doi.org/10.1093/petrology/44.5.851
|
Niu, Y. L., Wilson, M., Humphreys, E. R., et al., 2011. The Origin of Intra-Plate Ocean Island Basalts (OIB): The Lid Effect and Its Geodynamic Implications. Journal of Petrology, 52(7-8): 1443-1468. https://doi.org/10.1093/petrology/egr030
|
O'Connor, J. M., Duncan, R. A., 1990. Evolution of the Walvis Ridge-Rio Grande Rise Hot Spot System: Implications for African and South American Plate Motions over Plumes. Journal of Geophysical Research: Solid Earth, 95(B11): 17475-17502. https://doi.org/10.1029/jb095ib11p17475
|
O'Connor, J. M., Jokat, W., le Roex, A. P., et al., 2012. Hotspot Trails in the South Atlantic Controlled by Plume and Plate Tectonic Processes. Nature Geoscience, 5(10): 735-738. https://doi.org/10.1038/ngeo1583
|
Pfä nder, J. A., Münker, C., Stracke, A., et al., 2007. Nb/Ta and Zr/Hf in Ocean Island Basalts-Implications for Crust-Mantle Differentiation and the Fate of Niobium. Earth and Planetary Science Letters, 254(1-2): 158-172. https://doi.org/10.1016/j.epsl.2006.11.027
|
Ramalho, R. S., Helffrich, G., Cosca, M., et al., 2010a. Vertical Movements of Ocean Island Volcanoes: Insights from a Stationary Plate Environment. Marine Geology, 275(1-4): 84-95. https://doi.org/10.1016/j.margeo.2010.04.009
|
Ramalho, R., Helffrich, G., Schmidt, D. N., et al., 2010b. Tracers of Uplift and Subsidence in the Cape Verde Archipelago. Journal of the Geological Society, 167(3): 519-538. https://doi.org/10.1144/0016-76492009-056
|
Ren, J. S., Xu, Q. Q., Zhao, L., et al., 2015. Looking for Submerged Landmasses. Geological Review, 61(5): 969-989(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201505001.htm
|
Robertson, A. H. F., 1984. Mesozoic Deep-Water and Tertiary Volcaniclastic Deposition of Maio, Cape Verde Islands: Implications for Atlantic Paleoenvironments and Ocean Island Volcanism. Geological Society of America Bulletin, 95(4): 433-453. https://doi.org/10.1130/0016-7606(1984)95433:mdatvd>2.0.co;2 doi: 10.1130/0016-7606(1984)95433:mdatvd>2.0.co;2
|
Rohde, J. K., van den Bogaard, P., Hoernle, K., et al., 2013. Evidence for an Age Progression along the Tristan-Gough Volcanic Track from New 40Ar/39Ar Ages on Phenocryst Phases. Tectonophysics, 604: 60-71. https://doi.org/10.1016/j.tecto.2012.08.026
|
Safonova, I. Y., Santosh, M., 2014. Accretionary Complexes in the Asia-Pacific Region: Tracing Archives of Ocean Plate Stratigraphy and Tracking Mantle Plumes. Gondwana Research, 25(1): 126-158. https://doi.org/10.1016/j.gr.2012.10.008
|
Samrock, L. K., Wartho, J. A., Hansteen, T. H., 2019. 40Ar-39Ar Geochronology of the Active Phonolitic Cadamosto Seamount, Cape Verde. Lithos, 344-345: 464-481. https://doi.org/10.1016/j.lithos.2019.07.003
|
Sano, H., Kanmero, K., 1991. Collapse of Ancient Oceanic Reef Complex: What Happened during Collision of Akiyoshi Reef Complex? Sequence of Collisional Collapse and Generation of Collapse Products. The Journal of the Geological Society of Japan, 97(8): 631-644. https://doi.org/10.5575/geosoc.97.631
|
Scoates, J. S., lo Cascio, M., Weis, D., et al., 2006. Experimental Constraints on the Origin and Evolution of Mildly Alkalic Basalts from the Kerguelen Archipelago, Southeast Indian Ocean. Contributions to Mineralogy and Petrology, 151(5): 582-599. https://doi.org/10.1007/s00410-006-0070-y
|
Sheppard, S. M. F., Harris, C., 1985. Hydrogen and Oxygen Isotope Geochemistry of Ascension Island Lavas and Granites: Variation with Crystal Fractionation and Interaction with Sea Water. Contributions to Mineralogy and Petrology, 91(1): 74-81. https://doi.org/10.1007/bf00429429
|
Shi, R. D., Yang, J. S., Xu, Z. Q., et al., 2008. The Bangong Lake Ophiolite (NW Tibet) and Its Bearing on the Tectonic Evolution of the Bangong-Nujiang Suture Zone. Journal of Asian Earth Sciences, 32(5-6): 438-457. https://doi.org/10.1016/j.jseaes.2007.11.011
|
Skolotnev, S. G., Bel'tenev, V. E., Lepekhina, E. N., et al., 2010. Younger and Older Zircons from Rocks of the Oceanic Lithosphere in the Central Atlantic and Their Geotectonic Implications. Geotectonics, 44(6): 462-492. https://doi.org/10.1134/s0016852110060038
|
Song, S. G., Yang, L. M., Zhang, Y. Q., et al., 2017. Qi-Qin Accretionary Belt in Central China Orogen: Accretion by Trench Jam of Oceanic Plateau and Formation of Intra-Oceanic Arc in the Early Paleozoic Qin-Qi-Kun Ocean. Science Bulletin, 62(15): 1035-1038. https://doi.org/10.1016/j.scib.2017.07.009
|
Staudigel, H., Clague, D. A., 2010. The Geological History of Deep-Sea Volcanoes: Biosphere, Hydrosphere, and Lithosphere Interactions. Oceanography, 23(1): 58-71. https://doi.org/10.5670/oceanog.2010.62
|
Storey, M., Saunders, A. D., Tarney, J., et al., 1989. Contamination of Indian Ocean Asthenosphere by the Kerguelen: Heard Mantle Plume. Nature, 338(6216): 574-576. https://doi.org/10.1038/338574a0
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
Tanaka, R., Makishima, A., Nakamura, E., 2008. Hawaiian Double Volcanic Chain Triggered by an Episodic Involvement of Recycled Material: Constraints from Temporal Sr-Nd-Hf-Pb Isotopic Trend of the Loa-Type Volcanoes. Earth and Planetary Science Letters, 265(3-4): 450-465. https://doi.org/10.1016/j.epsl.2007.10.035
|
Tang, Y., Zhai, Q. G., Hu, P. Y., et al., 2018. Petrology, Geochemistry and Geochronology of the Zhongcang Ophiolite, Northern Tibet: Implications for the Evolution of the Bangong-Nujiang Ocean. Geoscience Frontiers, 9(5): 1369-1381. https://doi.org/10.1016/j.gsf.2018.05.007
|
Thompson, G. M., Smith, I. E. M., Malpas, J. G., 2001. Origin of Oceanic Phonolites by Crystal Fractionation and the Problem of the Daly Gap: An Example from Rarotonga. Contributions to Mineralogy and Petrology, 142(3): 336-346. https://doi.org/10.1007/s004100100294
|
Torsvik, T. H., Amundsen, H., Hartz, E. H., et al., 2013. A Precambrian Microcontinent in the Indian Ocean. Nature Geoscience, 6(3): 223-227. https://doi.org/10.1038/ngeo1736
|
Wang, B. D., Wang, L. Q., Chung, S. L., et al., 2016. Evolution of the Bangong-Nujiang Tethyan Ocean: Insights from the Geochronology and Geochemistry of Mafic Rocks within Ophiolites. Lithos, 245: 18-33. https://doi.org/10.1016/j.lithos.2015.07.016
|
Wang, Z. H., Wang, Y. S., Xie, Y. H., et al., 2005. The Tarenben Oceanic-Island Basalts in the Middle Part of the Bangong-Nujiang Suture Zone, Xizang and Their Geological Implications. Sedimentary Geology and Tethyan Geology, 25(Suppl. 1): 155-162(in Chinese with English abstract).
|
Weaver, B. L., 1990. Geochemistry of Highly-Undersaturated Ocean Island Basalt Suites from the South Atlantic Ocean: Fernando de Noronha and Trindade Islands. Contributions to Mineralogy and Petrology, 105(5): 502-515. https://doi.org/10.1007/bf00302491
|
Weis, D., Frey, F. A., 2002. Submarine Basalts of the Northern Kerguelen Plateau: Interaction between the Kerguelen Plume and the Southeast Indian Ridge Revealed at ODP Site 1140. Journal of Petrology, 43(7): 1287-1309. https://doi.org/10.1093/petrology/43.7.1287
|
Wendt, J. I., Regelous, M., Collerson, K. D., et al., 1997. Evidence for a Contribution from Two Mantle Plumes to Island-Arc Lavas from Northern Tonga. Geology, 25(7): 611. https://doi.org/10.1130/0091-7613(1997)0250611:efacft>2.3.co;2 doi: 10.1130/0091-7613(1997)0250611:efacft>2.3.co;2
|
Wessel, P., Sandwell, D., Kim, S. S., 2010. The Global Seamount Census. Oceanography, 23(1): 24-33. https://doi.org/10.5670/oceanog.2010.60
|
Widom, E., Carlson, R. W., Gill, J. B., et al., 1997. Th-Sr-Nd-Pb Isotope and Trace Element Evidence for the Origin of the Sã o Miguel, Azores, Enriched Mantle Source. Chemical Geology, 140(1-2): 49-68. https://doi.org/10.1016/s0009-2541(97)00041-7
|
Wu, H., Sun, S. L., Liu, H. Y., et al., 2019. An Early Cretaceous Slab Window beneath Central Tibet, SW China: Evidence from OIB-Like Alkaline Gabbros in the Duolong Area. Terra Nova, 31(1): 67-75. https://doi.org/10.1111/ter.12370
|
Xu, W., Li, C., Wang, M., et al., 2017. Subduction of a Spreading Ridge within the Bangong Co-Nujiang Tethys Ocean: Evidence from Early Cretaceous Mafic Dykes in the Duolong Porphyry Cu-Au Deposit, Western Tibet. Gondwana Research, 41: 128-141. https://doi.org/10.1016/j.gr.2015.09.010
|
Yan, L. L., Zhang, K. J., 2020. Infant Intra-Oceanic Arc Magmatism Due to Initial Subduction Induced by Oceanic Plateau Accretion: A Case Study of the Bangong Meso-Tethys, Central Tibet, Western China. Gondwana Research, 79: 110-124. https://doi.org/10.1016/j.gr.2019.08.008
|
Yang, H. J., Frey, F. A., Weis, D., et al., 1998. Petrogenesis of the Flood Basalts Forming the Northern Kerguelen Archipelago: Implications for the Kerguelen Plume. Journal of Petrology, 39(4): 711-748. https://doi.org/10.1093/petroj/39.4.711
|
Yu, Y. P., Hu, P. Y., Li, C., et al., 2016. The Petrology and Geochemistry of Early Cretaceous Ocean Island Volcanic Rocks in the Middle-Western Segment of Bangong Co-Nujiang Suture Zone. Geological Bulletin of China, 35(8): 1281-1290(in Chinese with English abstract). http://www.researchgate.net/publication/323005920_The_petrology_and_geochemistry_of_Early_Cretaceous_ocean_island_volcanic_rocks_in_the_middle-western_segment_of_Bangong_Co-Nujiang_suture_zone
|
Yuan, S. H., Pan, G. T., Ren, F., 2020. Review on Geological Research of Oceanic Island-Seamount and Its Significance for Reconstruction of Ocean Plate. Earth Science, 45(8): 2826-2845(in Chinese with English abstract).
|
Zeng, Y. C., Chen, J. L., Xu, J. F., et al., 2016. Sediment Melting during Subduction Initiation: Geochronological and Geochemical Evidence from the Darutso High-Mg Andesites within Ophiolite Melange, Central Tibet. Geochemistry, Geophysics, Geosystems, 17(12): 4859-4877. https://doi.org/10.1002/2016gc006456
|
Zhang, H. Q., Sun, X. M., Chen, X. B., 1997. Oceanic Island-Seamount Carbonate Sedimentary Feature and Its Paleogeographic Significance. Geological Science and Technology Information, 16(1): 29-33(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ701.005.htm
|
Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7-17. https://doi.org/10.1016/j.lithos.2015.06.023
|
Zhu, D. C., Pan, G. T., Mo, X. X., et al., 2006. Identification for the Mesozoic OIB-Type Basalts in Central Qinghai-Tibetan Plateau: Geochronology, Geochemistry and Their Tectonic Setting. Acta Geologica Sinica, 80(9): 1312-1328(in Chinese with English abstract). http://www.researchgate.net/publication/279655522_Identification_for_the_Mesozoic_OIB-type_basalts_in_central_Qinghai-Tibetan_Plateau_Geochronology_geochemistry_and_their_tectonic_setting
|
鲍佩声, 肖序常, 苏犁, 等, 2007. 西藏洞错蛇绿岩的构造环境: 岩石学、地球化学和年代学制约. 中国科学: 地球科学, 37(3): 298-307. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200703001.htm
|
范建军, 张博川, 刘海永, 等, 2019. 班公湖-怒江洋早-中侏罗世洋内俯冲: 来自洞错蛇绿岩的证据. 岩石学报, 35(10): 3048-3064. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201910007.htm
|
牛耀龄, 2010. 板内洋岛玄武岩(OIB)成因的一些基本概念和存在的问题. 科学通报, 55(2): 103-114. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201002002.htm
|
牛耀龄, 2013. 全球构造与地球动力学: 岩石学与地球化学方法应用实例. 北京: 科学出版社.
|
任纪舜, 徐芹芹, 赵磊, 等, 2015. 寻找消失的大陆. 地质论评, 61(5): 969-989. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201505001.htm
|
王忠恒, 王永胜, 谢元和, 等, 2005. 西藏班公湖-怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义. 沉积与特提斯地质, 25(增刊1): 155-162. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD2005Z1028.htm
|
于云鹏, 胡培远, 李才, 等, 2016. 西藏班公湖-怒江缝合带中西段早白垩世洋岛火山岩岩石学及地球化学特征. 地质通报, 35(8): 1281-1290. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201608009.htm
|
袁四化, 潘桂棠, 任飞, 2020. 洋岛-海山研究进展及其对于重建洋板块的意义. 地球科学, 45(8): 2826-2845. doi: 10.3799/dqkx.2020.124
|
张海清, 孙晓猛, 陈先兵, 1997. 洋岛、海山碳酸盐岩的沉积特征及其古地理意义. 地质科技情报, 16(1): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ701.005.htm
|
朱弟成, 潘桂棠, 莫宣学, 等, 2006. 青藏高原中部中生代OIB型玄武岩的识别: 年代学、地球化学及其构造环境. 地质学报, 80(9): 1312-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200609008.htm
|