• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 9
    Oct.  2021
    Turn off MathJax
    Article Contents
    Sun Liqun, Zhang Xin, Liang Xing, Chang Zhikai, Fu Pengyu, Zhang jie, 2021. Identification and Characteristics of the Sedimentary Environment since the Quaternary in Zi River Delta, Dongting Basin. Earth Science, 46(9): 3245-3257. doi: 10.3799/dqkx.2020.357
    Citation: Sun Liqun, Zhang Xin, Liang Xing, Chang Zhikai, Fu Pengyu, Zhang jie, 2021. Identification and Characteristics of the Sedimentary Environment since the Quaternary in Zi River Delta, Dongting Basin. Earth Science, 46(9): 3245-3257. doi: 10.3799/dqkx.2020.357

    Identification and Characteristics of the Sedimentary Environment since the Quaternary in Zi River Delta, Dongting Basin

    doi: 10.3799/dqkx.2020.357
    • Received Date: 2020-10-10
      Available Online: 2021-10-14
    • Publish Date: 2021-10-14
    • The study of sedimentary facies and characteristics contributes to a more comprehensive understanding of river and lake environmental evolution, but there are no description of such studies in the Zi River delta, Dongting basin. Based on the Quaternary sedimentary samples of typical borehole (BMS01 and BMS02), and combined with the petrology, chronology and sedimentology study, this study uses particle size frequency distribution curves for the discriminant analysis of sedimentary facies of Quaternary deposits in the studied area. Grain size parameters of the calculation results and the Fisher discriminant model were used for verification. The results show that the Fisher model is suitable for the identification of fluvial facies, lacustrine facies and unstable facies in plain area. In the application of the discriminant function in the study area, the overall recognition accuracy rate of the discriminant function was 94.9%, and the misjudgment rate was 5.1%, which was higher than the general standard of 75% accuracy. Based on the comprehensive identification results and geological research data, this paper expounds the regional polycyclic sedimentary characteristics and evolution process since the Quaternary by using C-M diagram and particle size scatter diagram, and explains the formation mechanism of the strata. The research results could provide basic data for the classification and correlation of Quaternary strata, the evaluation of groundwater resources and the study of natural and inferior groundwater.

       

    • loading
    • Amireh, B. S., 2015. Grain Size Analysis of the Lower Cambrian-Lower Cretaceous Clastic Sequence of Jordan: Sedimentological and Paleo-Hydrodynamical Implications. Journal of Asian Earth Sciences, 97: 67-88. https://doi.org/10.1016/j.jseaes.2014.09.029
      Bai, D. Y., Li, C. A., Ma, T. Q., 2010b. Quaternary Tectonic-Sedimentary Characteristics and Environmental Evolution of Anxiang Sag in Dongting Basin and Its West Periphery. Journal of Earth Sciences and Environment, 32(2): 120-129 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX201002004.htm
      Bai, D. Y., Li, S. W., Zhou, K. J., et al., 2010a. Tectonic-Sedimentary Landform Classification of 1: 250 000 Changde Sheet and Its Implication for Researches on Quaternary Geology and Environment of Jianghan-Dongting Basin. Geology in China, 37(2): 280-297 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201002004.htm
      Bai, D. Y., Zhou, K. J., Ma, T. Q., et al., 2009. Study on Quaternary Tectonic-Sedimentary Evolution of Lujiao Area, East Edge of Yuanjiang Sag, Dongting Basin. Journal of Geomechanics, 15(4): 409-420 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DZLX200904010&dbcode=CJFD&year=2009&dflag=pdfdown
      Chen, D. P., Li, C. A., Bai, D. Y., et al., 2014. Preliminary Discussion on the Quaternary Stratigraphic Framework of Dongting Basin. Geological Science and Technology Information, 33(1): 67-73 (in Chinese with English abstract).
      Clarke, D. W., Boyle, J. F., Chiverrell, R. C., et al., 2014. A Sediment Record of Barrier Estuary Behaviour at the Mesoscale: Interpreting High-Resolution Particle Size Analysis. Geomorphology, 221: 51-68. https://doi.org/10.1016/j.geomorph.2014.05.029
      Deepthi, K., Natesan, U., Muthulakshmi, A. L., et al., 2018. Grain Size Analysis for Elucidation of Depositional Environment of Kalpakkam, India. Environmental Processes, 5(1): 183-199. https://doi.org/10.1007/s40710-017-0278-z
      Dong, W. J., Zhu, Y. X., Wan, M. G., 2011. Identification and Classification of Sedimentary Environment Based on Fisher Discriminant Analysis. Journal of Yangtze University (Natural Science Edition), 8(5): 5-7, 11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJDL201105002.htm
      Fang, H. Q., 1959. Neotectonics Movements in the Middle and Lower Reaches of the Yangtze River. Acta Geological Sinica, 33(3): 328-343 (in Chinese with Russian abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE195903007.htm
      Folk, R. L., 1966. A Review of grain-Size Parameters. Sedimentology, 6(2): 73-93. https://doi.org/10.1111/j.1365-3091.1966.tb01572.x
      Folk, R. L., Ward, W. C., 1957. Brazos River Bar: A Study in the Significance of Grain Size Parameters. Journal of Sedimentary Research, 27(1): 3-26. https://doi.org/10.1306/74d70646-2b21-11d7-8648000102c1865d
      Friedman, G. M., 1967. Dynamic Processes and Statistical Parameters Compared for Size Frequency Distribution of Beach and River Sands. SEPM Journal of Sedimentary Research, 37(2): 327-354. https://doi.org/10.1306/74d716cc-2b21-11d7-8648000102c1865d
      Gu, Y. S., Guan, S., Ma, T., et al., 2018. Quaternary Sedimentary Environment Documented by Borehole Stratigraphical Records in Eastern Jianghan Basin. Earth Science, 43(11): 3989-4000 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201811015.htm
      Le Roux, J. P., Rojas, E. M., 2007. Sediment Transport Patterns Determined from Grain Size Parameters: Overview and State of the Art. Sedimentary Geology, 202(3): 473-488. https://doi.org/10.1016/j.sedgeo.2007.03.014
      Liang, X., Zhang, R. Q., Pi, J. G., et al., 2001. Characteristics of Tectonic Movement of Dongting Basin in the Quaternary Period. Geological Science and Technology Information, 20(2): 11-14 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZKQ200102002.htm
      Liu, C. M., Liu, W., 1993. The Evolution of Lakes on Jiaghan Plain in Quaternary. Journal of Central China Normal University (Natural Sciences), 27(4): 533-536 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HZSZ199304028.htm
      Luo, Q., 2001. The Study of the Quaternary Environment of the Dongting Lake and the Upper Xiangjiang (Dissertation). Central China Normal University, Wuhan (in Chinese with English abstract).
      Passega, R. P., 1957. Texture as Characteristic of Clastic Deposition. AAPG Bulletin, 41(9): 1952-1984. https://doi.org/10.1306/0bda594e-16bd-11d7-8645000102c1865d
      Passega, R. P., 1964. Grain Size Representation by CM Patterns as a Geological Tool. Journal of Sedimentary Research, 34(4): 830-847. https://doi.org/10.1306/74d711a4-2b21-11d7-8648000102c1865d
      Pi, J. G., Zhang, G. L., Liang, X., et al., 2001. Preliminary Research on Sedimentary Environment Evolution in Dongting Basin in the Quaternary Period. Geological Science and Technology Information, 20(2): 6-10 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200102001.htm
      Pierre, P., Laurent, E., 2009. Large-Scale Neotectonic Slope Movements: A Case Study from Séchilienne (Isère, France). Bulletin of Engineering Geology and the Environment, 68(4): 567-577. https://doi.org/10.1007/s10064-009-0221-2
      Rajganapathi, V. C., Jitheshkumar, N., Sundararajan, M., et al., 2013. Grain Size Analysis and Characterization of Sedimentary Environment along Thiruchendur Coast, Tamilnadu, India. Arabian Journal of Geosciences, 6(12): 4717-4728. https://doi.org/10.1007/s12517-012-0709-0
      Sahu, B. K., 1964. Depositional Mechanisms from the Size Analysis of Clastic Sediments. SEPM Journal of Sedimentary Research, 34: 73-83. https://doi.org/10.1306/74d70fce-2b21-11d7-8648000102c1865d
      Wan Mohtar, W. H. M., Nawang, S. A. B., Abdul Maulud, K. N., et al., 2017. Textural Characteristics and Sedimentary Environment of Sediment at Eroded and Deposited Regions in the Severely Eroded Coastline of Batu Pahat, Malaysia. Science of the Total Environment, 598: 525-537. https://doi.org/10.1016/j.scitotenv.2017.04.093
      Wang, C. L., 1993. The Formation and Evolution of Dongting Lake Basin. Tropical Geomorphology, 14(2): 70-78 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-RDDM199302010.htm
      Wang, X. Y., 1983. Preliminary Study on the Paleoclimatology of the Quaternary in Tianjin Plain. Journal of Hebei Institute of Geology, 6(1): 65-72 (in Chinese). http://qikan.cqvip.com/Qikan/Article/Detail?id=74888487495756514857484957
      Wang, Y. Y., Huang, S. B., Zhao, L., et al., 2017. Evolution of Quaternary Sedimentary Environment in Shallow Aquifers, at Shahu Area, Jianghan Plain. Earth Science, 42(5): 751-760 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705010.htm
      Wang, Z. B., Lu, K., Wen, Z. H., et al., 2020. Grain Size Compositions and Their Influencing Factors of the Surface Sediments in Eastern China Seas. Earth Science, 45(7): 2709-2721 (in Chinese with English abstract).
      Wuhan Center of China Geological Survey, 2015. A Special Study on the Quaternary Geology of Jianhan-Dongting Basin. Wuhan Center of China Geological Survey, Wuhan (in Chinese).
      Yang, H. R., Xu, X., 1980. Quaternary Environmental Changes in Eastern China. Journal of Nanjing University (Natural Sciences), 16(1): 121-144, 166-169 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-NJDZ198001011.htm
      Yin, Z. Q., Qin, X. G., Wu, J. S., et al., 2008. Multimodal Grain-Size Distribution Characteristics and Formation Mechanism of Lake Sediments. Quaternary Sciences, 28(2): 345-353 (in Chinese with English abstract). http://www.dsjyj.com.cn/EN/abstract/abstract8938.shtml
      Yu, X. N., Zhan, Q., Wang, Z. H., 2016. Sedimentary Structures and Grain Size Patterns of the Geomorphic Units in the Yangtze River Mouth. Marine Geology & Quaternary Geology, 36(4): 1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201604001.htm
      Zan, J. B., Li, X. J., Fang, X. M., et al., 2018. Grain-Size Analysis of Upper Pliocene Red Clay Deposits from Linxia Basin: Implications for Asian Monsoon Evolution on the NE Margin of the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 511: 597-605. https://doi.org/10.1016/j.palaeo.2018.09.027
      Zhang, D. H., 1994. Neotectonics and Quaternary Environmental Changes in Jianghan Basin. Crustal Deformation and Earthquake, 14(1): 74-80 (in Chinese with English abstract). http://www.researchgate.net/publication/292741002_Neotectonics_and_Quaternary_environmental_changes_in_Jianghan_Basin
      Zhang, J. X., Shen, Z. J., Gu, H. B., et al., 2007. Quaternary Environmental Geochemistry in Dongting Lake Area. Geological Publishing House, Beijing (in Chinese).
      Zhang, L., 2018. Quaternary Paleoenvironment and Paleoclimate in Chengdu Basin (Dissertation), Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Zhang, P., Song, C. H., Yang, Y. B., et al., 2008. The Significance and Establishment of Discriminant Function with Grain Size of Stable Lacustrine Sediment and Eolian Loess. Acta Sedimentologica Sinica, 26(3): 501-507 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200803018.htm
      Zhang, R. Q., Liang, X., Zhang, G. L., et al., 2001. A Preliminary Study of Climatic Change in Dongting Lake Area in the Quaternary Period. Geological Science and Technology Information, 20(2): 1-5 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200102001
      Zhang, X., Liang, X., Sun, L. Q., et al., 2020. Discriminant Model of River-Lake Facies in the Upper Reach of Hanjiang Section of Jianghan Basin Based on Fisher Principle. Earth Science, 45(11): 4254-4266 (in Chinese with English abstract).
      Zhang, Y. F., Li, C. A., Chen, G. J., et al., 2005. Characteristics and Paleoclimatic Significance of Magnetic Susceptibility and Stable Organic Carbon Isotopes from a Bore in Zhoulao Town, Jianghan Plain. Earth Science, 30(1): 114-120 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dqkx200501016
      Zhao, J. X., Li, C. A., Zhang, Y. F., et al., 2016. Quaternary Chronostratigraphy of Borehole S3-7 in Dongting Basin. Earth Science, 41(4): 633-643 (in Chinese with English abstract).
      柏道远, 李长安, 马铁球, 等, 2010b. 第四纪洞庭盆地安乡凹陷及西缘构造-沉积特征与环境演化. 地球科学与环境学报, 32(2): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201002004.htm
      柏道远, 李送文, 周柯军, 等, 2010a. 1: 25万常德市幅构造-沉积地貌类型划分及其对江汉-洞庭盆地第四纪地质与环境研究的启示. 中国地质, 37(2): 280-297. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201002004.htm
      柏道远, 周柯军, 马铁球, 等, 2009. 第四纪洞庭盆地沅江凹陷东缘鹿角地区构造-沉积演化研究. 地质力学学报, 15(4): 409-420. doi: 10.3969/j.issn.1006-6616.2009.04.009
      陈渡平, 李长安, 柏道远, 等, 2014. 洞庭盆地第四纪地层格架初拟. 地质科技情报, 33(1): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401011.htm
      董文娟, 朱远鑫, 万明刚, 2011. 基于Fisher判别准则的沉积环境判别与分类方法. 长江大学学报(自然版), 8(5): 5-7, 11. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201105002.htm
      方鸿琪, 1959. 长江中下游地区的新构造运动. 地质学报, 33(3): 328-343. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE195903007.htm
      顾延生, 管硕, 马腾, 等, 2018. 江汉盆地东部第四纪钻孔地层与沉积环境. 地球科学, 43(11): 3989-4000. doi: 10.3799/dqkx.2018.324
      梁杏, 张人权, 皮建高, 等, 2001. 洞庭盆地第四纪构造活动特征. 地质科技情报, 20(2): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200102002.htm
      刘昌茂, 刘武, 1993. 第四纪江汉平原湖群的演变. 华中师范大学学报(自然科学版), 27(4): 533-536 https://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ199304028.htm
      罗清, 2001. 洞庭湖及湘江下游第四纪环境的研究(硕士学位论文). 武汉: 华中师范大学.
      皮建高, 张国梁, 梁杏, 等, 2001. 洞庭盆地第四纪沉积环境演变的初步分析. 地质科技情报, 20(2): 6-10. doi: 10.3969/j.issn.1000-7849.2001.02.002
      王春林, 1993. 洞庭湖盆地的形成和演化. 热带地貌, 14(2): 70-78. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDM199302010.htm
      王宪瑜, 1983. 天津平原第四纪古气候演化初探. 河北地质学院学报, 6(1): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX198301007.htm
      王妍妍, 黄爽兵, 赵龙, 等, 2017. 江汉平原沙湖地区浅层含水层第四纪沉积环境演化. 地球科学, 42(5): 751-760. doi: 10.3799/dqkx.2017.063
      王中波, 陆凯, 温珍河, 等, 2020. 中国东部海域表层沉积物粒度组成及影响因素. 地球科学, 45(7): 2709-2721. doi: 10.3799/dqkx.2020.028
      中国地质调查局武汉地质调查中心, 2015. 江汉-洞庭盆地第四纪地质专题研究. 武汉: 中国地质调查局武汉地质调查中心.
      杨怀仁, 徐馨, 1980. 中国东部第四纪自然环境的演变. 南京大学学报(自然科学版), 16(1): 121-144, 166-169. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ198001011.htm
      殷志强, 秦小光, 吴金水, 等, 2008. 湖泊沉积物粒度多组分特征及其成因机制研究. 第四纪研究, 28(2): 345-353. doi: 10.3321/j.issn:1001-7410.2008.02.018
      喻薛凝, 战庆, 王张华, 2016. 长江口各地貌单元沉积构造和粒度分区特征. 海洋地质与第四纪地质, 36(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201604001.htm
      张德厚, 1994. 江汉盆地新构造与第四纪环境变迁. 地壳形变与地震, 14(1): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB401.010.htm
      张建新, 申志军, 顾海滨, 等, 2007. 洞庭湖区第四纪环境地球化学. 北京: 地质出版社.
      张露, 2018. 成都盆地第四纪古环境与古气候研究(硕士学位论文). 成都: 成都理工大学.
      张平, 宋春晖, 杨用彪, 等, 2008. 稳定湖相沉积物和风成黄土粒度判别函数的建立及其意义. 沉积学报, 26(3): 501-507. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200803018.htm
      张人权, 梁杏, 张国梁, 等, 2001. 洞庭湖区第四纪气候变化的初步探讨. 地质科技情报, 20(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200102000.htm
      张鑫, 梁杏, 孙立群, 等, 2020. 基于Fisher判别准则的河湖相判别模型的构建: 以江汉盆地汉江上游段为例. 地球科学, 45(11): 4254-4266. doi: 10.3799/dqkx.2019.291
      张玉芬, 李长安, 陈国金, 等, 2005. 江汉平原湖区周老镇钻孔磁化率和有机碳稳定同位素特征及其古气候. 地球科学, 30(1): 114-120. http://www.earth-science.net/article/id/1459
      赵举兴, 李长安, 张玉芬, 等, 2016. 洞庭盆地S3-7孔第四纪年代地层. 地球科学, 41(4): 633-643. doi: 10.3799/dqkx.2016.052
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(3)

      Article views (1200) PDF downloads(53) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return