• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 9
    Oct.  2021
    Turn off MathJax
    Article Contents
    Hao Huizhen, Gu Qing, Hu Xiumian, 2021. Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning. Earth Science, 46(9): 3091-3106. doi: 10.3799/dqkx.2020.360
    Citation: Hao Huizhen, Gu Qing, Hu Xiumian, 2021. Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning. Earth Science, 46(9): 3091-3106. doi: 10.3799/dqkx.2020.360

    Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning

    doi: 10.3799/dqkx.2020.360
    • Received Date: 2020-09-16
      Available Online: 2021-10-14
    • Publish Date: 2021-10-14
    • Mineral intelligent identification is a developing interdisciplinary research field between earth science and information science, where machine learning shows great vitality. This paper divides the procedure of mineral intelligent identification into four stages, including mineral collection, data acquisition, model building and category discriminant. Based on the test methods and data types, the mineral intelligent identification can be achieved by three different research routes, namely, chemical-composition-based, microscopic-optical-image-based and spectral-image-based. Various methods of machine learning for mineral intelligent recognition are reviewed in detail including statistical learning, similarity measurement, decision tree, artificial neural network and few new technologies related to testing sample. We suggest that the future directions in this field are to eliminate the gap between geology and artificial intelligence, to build high-quality mineral datasets that can be learned by the machine, to explore and consummate machine learning methods suitable for mineral intelligence identification, to increase the ability of model explanation, and to strengthen the practice of industrial application.

       

    • loading
    • Akkaş, E., Akin, L., Evren Çubukçu, H., et al., 2015. Application of Decision Tree Algorithm for Classification and Identification of Natural Minerals Using SEM-EDS. Computers & Geosciences, 80: 38-48. https://doi.org/10.1016/j.cageo.2015.03.015
      Ali, A., Khan, M. Z., Rehan, I., et al., 2016. Quantitative Classification of Quartz by Laser Induced Breakdown Spectroscopy in Conjunction with Discriminant Function Analysis. Journal of Spectroscopy, 2016: 1-7. https://doi.org/10.1155/2016/1835027
      Aligholi, S., Khajavi, R., Razmara, M., 2015. Automated Mineral Identification Algorithm Using Optical Properties of Crystals. Computers & Geosciences, 85: 175-183. https://doi.org/10.1016/j.cageo.2015.09.014
      Aligholi, S., Lashkaripour, G. R., Khajavi, R., et al., 2017. Automatic Mineral Identification Using Color Tracking. Pattern Recognition, 65: 164-174. https://doi.org/10.1016/j.patcog.2016.12.012
      Alvey, D. C., Morton, K., Harmon, R. S., et al., 2010. Laser-Induced Breakdown Spectroscopy-Based Geochemical Fingerprinting for the Rapid Analysis and Discrimination of Minerals: The Example of Garnet. Applied Optics, 49(13): 168-180. https://doi.org/10.1364/AO.49.00C168
      Anderson, T. I., Vega, B., Kovscek, A. R., 2020. Multimodal Imaging and Machine Learning to Enhance Microscope Images of Shale. Computers & Geosciences, 145: 104593. https://doi.org/10.1016/j.cageo.2020.104593
      Baykan, N. A., Yılmaz, N., 2010. Mineral Identification Using Color Spaces and Artificial Neural Networks. Computers & Geosciences, 36(1): 91-97. https://doi.org/10.1016/j.cageo.2009.04.009
      Bergen, K. J., Johnson, P. A., de Hoop, M. V., et al., 2019. Machine Learning for Data-Driven Discovery in Solid Earth Geoscience. Science, 363(6433): eaau0323. https://doi.org/10.1126/science.aau0323
      Borges, H. P., de Aguiar, M. S., 2019. Mineral Classification Using Machine Learning and Images of Microscopic Rock Thin Section. Mexican International Conference on Artificial Intelligence: Advances in Soft Computing, Cham.
      Carey, C., Boucher, T., Mahadevan, S., et al., 2015. Machine Learning Tools Formineral Recognition and Classification from Raman Spectroscopy. Journal of Raman Spectroscopy, 46(10): 894-903. https://doi.org/10.1002/jrs.4757
      Clegg, S. M., Sklute, E., Dyar, M. D., et al., 2009. Multivariate Analysis of Remote Laser-Induced Breakdown Spectroscopy Spectra Using Partial Least Squares, Principal Component Analysis, and Related Techniques. Spectrochimica Acta Part B: Atomic Spectroscopy, 64(1): 79-88. https://doi.org/10.1016/j.sab.2008.10.045
      Clelland, W. D., Fens, T. W., 1991. Automated Rock Characterization with SEM/Image-Analysis Techniques. SPE Formation Evaluation, 6(4): 437-443. https://doi.org/10.2118/20920-pa
      Cochrane, C. J., Blacksberg, J., 2015. A Fast Classification Scheme in Raman Spectroscopy for the Identification of Mineral Mixtures Using a Large Database with Correlated Predictors. IEEE Transactions on Geoscience and Remote Sensing, 53(8): 4259-4274. https://doi.org/10.1109/TGRS.2015.2394377
      Dyar, M. D., Carmosino, M. L., Breves, E. A., et al., 2012. Comparison of Partial Least Squares and Lasso Regression Techniques as Applied to Laser-Induced Breakdown Spectroscopy of Geological Samples. Spectrochimica Acta Part B: Atomic Spectroscopy, 70: 51-67. https://doi.org/10.1016/j.sab.2012.04.011
      El Haddad, J., de Lima Filho, E. S., Vanier, F., et al., 2019. Multiphase Mineral Identification and Quantification by Laser-Induced Breakdown Spectroscopy. Minerals Engineering, 134: 281-290. https://doi.org/10.1016/j.mineng.2019.02.025
      Flesche, H., Nielsen, A. A., Larsen, R., 2000. Supervised Mineral Classification with Semiautomatic Training and Validation Set Generation in Scanning Electron Microscope Energy Dispersive Spectroscopy Images of Thin Sections. Mathematical Geology, 32(3): 337-366. https://doi.org/10.1023/A:1007538028119
      Gallagher, M., Deacon, P., 2002. Neural Networks and the Classification of Mineralogical Samples Using X-Ray Spectra. Proceedings of the 9th International Conference on Neural Information Processing, Singapore.
      Gibbons, E., Léveillé, R., Berlo, K., 2020. Data Fusion of Laser-Induced Breakdown and Raman Spectroscopies: Enhancing Clay Mineral Identification. Spectrochimica Acta Part B: Atomic Spectroscopy, 170: 105905. https://doi.org/10.1016/j.sab.2020.105905
      Gomes, O. D. F. M., Iglesias, J. C. A., Paciornik, S., et al., 2013. Classification of Hematite Types in Iron Ores through Circularly Polarized Light Microscopy and Image Analysis. Minerals Engineering, 52: 191-197. https://doi.org/10.1016/j.mineng.2013.07.019
      Gomes, O., Paciornik, S., Iglesias, J. C. A., 2010. A Simple Methodology for Identifying Hematite Grains under Polarized Reflected Light Microscopy. Proceedings of 17th International Conference on Systems, Signals and Image Processing, IWSSIP, Rio de Janeiro.
      Gu, Y., 2003. Automated Scanning Electron Microscope Based Mineral Liberation Analysis an Introduction to JKMRC/FEI Mineral Liberation Analyser. Journal of Minerals and Materials Characterization and Engineering, 2(1): 33-41. https://doi.org/10.4236/jmmce.2003.21003
      Guo, Y. J., Zhou, Z., Lin, H. X., et al., 2020. The Mineral Intelligence Identification Method Based on Deep Learning Algorithms. Earth Science Frontiers, 27(5): 39-47 (in Chinese with English abstract).
      Hao, H. Z., Guo, R. H., Gu, Q., et al., 2019. Machine Learning Application to Automatically Classify Heavy Minerals in River Sand by Using SEM/EDS Data. Minerals Engineering, 143: 105899. https://doi.org/10.1016/j.mineng.2019.105899
      Harmon, R. S., Remus, J., McMillan, N. J., et al., 2009. LIBS Analysis of Geomaterials: Geochemical Fingerprinting for the Rapid Analysis and Discrimination of Minerals. Applied Geochemistry, 24(6): 1125-1141. https://doi.org/10.1016/j.apgeochem.2009.02.009
      Holden, E. J., Moss, S., Russell, J. K., et al., 2009. An Image Analysis Method to Determine Crystal Size Distributions of Olivine in Kimberlite. Computational Geosciences, 13(3): 255-268. https://doi.org/10.1007/s10596-008-9115-9
      Iglesias, J. C. Á., Santos, R. B. M., Paciornik, S., 2019. Deep Learning Discrimination of Quartz and Resin in Optical Microscopy Images of Minerals. Minerals Engineering, 138: 79-85. https://doi.org/10.1016/j.mineng.2019.04.032
      Ishikawa, S. T., Gulick, V. C., 2013a. An Automated Classification of Mineral Spectra. 44th Lunar and Planetary Science Conference, The Woodlands.
      Ishikawa, S. T., Gulick, V. C., 2013b. An Automated Mineral Classifier Using Raman Spectra. Computers & Geosciences, 54: 259-268. https://doi.org/10.1016/j.cageo.2013.01.011
      Itano, K., Ueki, K., Iizuka, T., et al., 2020. Geochemical Discrimination of Monazite Source Rock Based on Machine Learning Techniques and Multinomial Logistic Regression Analysis. Geosciences, 10(2): 63. https://doi.org/10.3390/geosciences10020063.
      Iyas, M. R., Setiawan, N. I., Warmada, I. W., 2020. Mask R-CNN for Rock-Forming Minerals Identification on Petrography, Case Study at Monterado, West Kalimantan. E3S Web of Conferences, 200: 06007. https://doi.org/10.1051/e3sconf/202020006007
      Izadi, H., Sadri, J., Bayati, M., 2017. An Intelligent System for Mineral Identification in Thin Sections Based on a Cascade Approach. Computers & Geosciences, 99: 37-49. https://doi.org/10.1016/j.cageo.2016.10.010
      Izadi, H., Sadri, J., Mehran, N. A., 2013. Intelligent Mineral Identification Using Clustering and Artificial Neural Networks Techniques. First Iranian Conference on Pattern Recognition and Image Analysis (PRIA), Birjand.
      Khajehzadeh, N., Haavisto, O., Koresaar, L., 2016. On-Stream and Quantitative Mineral Identification of Tailing Slurries Using LIBS Technique. Minerals Engineering, 98: 101-109. https://doi.org/10.1016/j.mineng.2016.08.002
      Larsen, R., Nielsen, A. A., Flesche, H., 2000. Sensitivity Study of a Semi-Automatic Training Set Generator. Pattern Recognition Letters, 21(13-14): 1175-1182. https://doi.org/10.1016/S0167-8655(00)00079-9
      Launeau, P., Cruden, A. R., Bouchez, J. L., 1994. Mineral Recognition in Digital Images of Rocks: A New Approach Using Multichannel Classification. The Canadian Mineralogist, 32(4): 919-933. http://ci.nii.ac.jp/naid/10008769038
      Li, M. C., Liu, C. Z., Zhang, Y., et al., 2020. A Deep Learning and Intelligent Recognition Method of Image Data for Rock Mineral and Its Implementation. Geotectonica et Metallogenia, 44(2): 203-211 (in Chinese with English abstract).
      Li, N., Hao, H. Z., Gu, Q., et al., 2017. A Transfer Learning Method for Automatic Identification of Sandstone Microscopic Images. Computers & Geosciences, 103: 111-121. https://doi.org/10.1016/j.cageo.2017.03.007
      Li, N., Hao, H. Z., Jiang, Z. W., et al., 2020. A Multi-Task Multi-Class Learning Method for Automatic Identification of Heavy Minerals from River Sand. Computers & Geosciences, 135: 104403. https://doi.org/10.1016/j.cageo.2019.104403
      Liu, J. C., Gibson, S. J., Mills, J., et al., 2019. Dynamic Spectrum Matching with One-Shot Learning. Chemometrics and Intelligent Laboratory Systems, 184: 175-181. https://doi.org/10.1016/j.chemolab.2018.12.005
      Liu, J., Osadchy, M., Ashton, L., et al., 2017. Deep Convolutional Neural Networks for Raman Spectrum Recognition: A Unified Solution. The Analyst, 142(21): 4067-4074. https://doi.org/10.1039/c7an01371j
      Liu, X. K., Song, H. J., 2020. Automatic Identification of Fossils and Abiotic Grains during Carbonate Microfacies Analysis Using Deep Convolutional Neural Networks. Sedimentary Geology, 410: 105790. https://doi.org/10.1016/j.sedgeo.2020.105790
      Lopez-Reyes, G., Sobron, P., Lefebvre, C., et al., 2014. Multivariate Analysis of Raman Spectra for the Identification of Sulfates: Implications for ExoMars. American Mineralogist, 99(8-9): 1570-1579. https://doi.org/10.2138/am.2014.4724
      Lou, W., Zhang, D. X., Bayless, R. C., 2020. Review of Mineral Recognition and Its Future. Applied Geochemistry, 122: 104727. https://doi.org/10.1016/j.apgeochem.2020.104727
      Maitre, J., Bouchard, K., Bédard, L. P., 2019. Mineral Grains Recognition Using Computer Vision and Machine Learning. Computers & Geosciences, 130: 84-93. https://doi.org/10.1016/j.cageo.2019.05.009
      Marschallinger, R., 1997. Automatic Mineral Classification in the Macroscopic Scale. Computers & Geosciences, 23(1): 119-126. https://doi.org/10.1016/S0098-3004(96)00074-X
      Marschallinger, R., Hofmann, P., 2010. The Application of Object Based Image Analysis to Petrographic Micrographs. In: Méndez-Vilas, A., Díaz, J., eds., Microscopy: Science, Technology, Applications and Education. Formatex Research Center, Badajoz.
      Nie, J. S., Peng, W. B., 2014. Automated SEM-EDS Heavy Mineral Analysis Reveals no Provenance Shift between Glacial Loess and Interglacial Paleosol on the Chinese Loess Plateau. Aeolian Research, 13: 71-75. https://doi.org/10.1016/j.aeolia.2014.03.005
      Nielsen, A. A., Flesche, H., Larsen, R., et al., 1998. Semi-Automatic Supervised Classification of Minerals from X-Ray Mapping Images. Proceedings of the Fourth Annual Conference of the International Association of Mathematical Geology, Ischia.
      Peng, W.H., Bai, L., Shang, S.W., et al., 2019. Common Mineral Intelligent Recognition Based on Improved InceptionV3. Geological Bulletin of China, 38(12): 2059-2066 (in Chinese with English abstract).
      Pires de Lima, R., Duarte, D., Nicholson, C., et al., 2020. Petrographic Microfacies Classification with Deep Convolutional Neural Networks. Computers & Geosciences, 142: 104481. https://doi.org/10.1016/j.cageo.2020.104481
      Ramil, A., López, A. J., Pozo-Antonio, J. S., et al., 2018. A Computer Vision System for Identification of Granite-Forming Minerals Based on RGB Data and Artificial Neural Networks. Measurement, 117: 90-95. https://doi.org/10.1016/j.measurement.2017.12.006
      Reid, A., Gottlieb, P., Macdonald, K, J., et al., 1985. QEM*SEM Image Analysis of Ore Minerals: Volume Fraction, Liberation and Observational Variances. Applied Mineralogy, Proceedings of the Second International Congress on Applied Mineralogy in the Minerals Industry, Los Angeles.
      Remus, J. J., Harmon, R. S., Hark, R. R., et al., 2012. Advanced Signal Processing Analysis of Laser-Induced Breakdown Spectroscopy Data for the Discrimination of Obsidian Sources. Applied Optics, 51(7): B65-B73. doi: 10.1364/AO.51.000B65
      Ross, B. J., Fueten, F., Yashkir, D. Y., 2001. Automatic Mineral Identification Using Genetic Programming. Machine Vision and Applications, 13(2): 61-69. https://doi.org/10.1007/PL00013273
      Ruisanchez, I., Potokar, P., Zupan, J., et al., 1996. Classification of Energy Dispersion X-Ray Spectra of Mineralogical Samples by Artificial Neural Networks. Journal of Chemical Information and Computer Sciences, 36(2): 214-220. https://doi.org/10.1021/ci950068b
      Sandmann, D., 2015. Method Development in Automated Mineralogy (Dissertation). University of Freiberg, Freiberg.
      Sevetlidis, V., Pavlidis, G., 2019. Effective Raman Spectra Identification with Tree-Based Methods. Journal of Cultural Heritage, 37: 121-128. https://doi.org/10.1016/j.culher.2018.10.016
      Singh, J. P., Thakur, S. N., 2007. Laser-Induced Breakdown Spectroscopy. Elsevier, Amsterdan.
      Stefaniak, E. A., Worobiec, A., Potgieter-Vermaak, S., et al., 2006. Molecular and Elemental Characterisation of Mineral Particles by Means of Parallel Micro-Raman Spectrometry and Scanning Electron Microscopy/Energy Dispersive X-Ray Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 61(7): 824-830. https://doi.org/10.1016/j.sab.2006.04.009
      Tang, D. G., Milliken, K. L., Spikes, K. T., 2020. Machine Learning for Point Counting and Segmentation of Arenite in Thin Section. Marine and Petroleum Geology, 120: 104518. https://doi.org/10.1016/j.marpetgeo.2020.104518
      Thompson, S., Fueten, F., Bockus, D., 2001. Mineral Identification Using Artificial Neural Networks and the Rotating Polarizer Stage. Computers & Geosciences, 27(9): 1081-1089. https://doi.org/10.1016/S0098-3004(00)00153-9
      Tiwary, A. K., Ghosh, S., Singh, R., et al., 2020. Automated Coal Petrography Using Random Forest. International Journal of Coal Geology, 232: 103629. https://doi.org/10.1016/j.coal.2020.103629
      Tovey, N. K., Krinsley, D. H., 1991. Mineralogical Mapping of Scanning Electron Micrographs. Sedimentary Geology, 75(1-2): 109-123. https://doi.org/10.1016/0037-0738(91)90053-G
      Tsuji, T., Yamaguchi, H., Ishii, T., et al., 2010. Mineral Classification from Quantitative X-Ray Maps Using Neural Network: Application to Volcanic Rocks. Island Arc, 19(1): 105-119. https://doi.org/10.1111/j.1440-1738.2009.00682.x
      Wu, C. W., Shi, R. J., Zeng, W. D., 2020. Mineral Raman Spectral Recognition Based on Siamese Network. Laser & Optoelectronics Progress, 57(9): 271-277 (in Chinese with English abstract).
      Xu, S. T., Zhou, Y. Z., 2018. Artificial Intelligence Identification of Ore Minerals under Microscope Based on Deep Learning Algorithm. Acta Petrologica Sinica, 34(11): 3244-3252 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201811010.htm
      Xu, Y. Y., Li, Z. X., Xie, Z., et al., 2020. Prediction of Copper Mineralization Based on Semi-Supervised Neural Network. Earth Science, 45(12): 4563-4573 (in Chinese with English abstract).
      Ye, R. Q., Niu, R. Q., Zhang, L. P., et al., 2011. Mineral Contents Determination and Accuracy Evaluation Based on Classification of Petrographic Images. Journal of China University of Mining & Technology, 40(5): 810-815, 822 (in Chinese with English abstract). http://www.cqvip.com/QK/93316X/201105/39774881.html
      Zhang, X. L., Wu, C. L., Zhou, Q., et al., 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Science, 45(2): 634-644 (in Chinese with English abstract).
      Zhang, X., Yu, M. X., Zhu, L. Q., et al., 2020. Raman Mineral Recognition Method Based on All-Optical Diffraction Deep Neural Network. Infrared and Laser Engineering, 49(10): 168-175 (in Chinese with English abstract).
      Zhang, Y., Li, M. C., Han, S., et al., 2019. Intelligent Identification for Rock-Mineral Microscopic Images Using Ensemble Machine Learning Algorithms. Sensors, 19(18): 3914. https://doi.org/10.3390/s19183914
      Zhao, Q. M., Wang, R., Teng, Q. Z., et al., 2015. Particle Composition Analysis Based on Rock Slice Orthogonal Polarization Sequence Diagram. Journal of Terahertz Science and Electronic Information Technology, 13(2): 285-290 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XXYD201502021.htm
      Zhao, Y. Y., Shen, Y., Wang, F., 2020. Intelligent Recognition of Ore Minerals Based on CART and PU Algorithm. Journal of Shenyang Normal University (Natural Science Edition), 38(2): 176-182 (in Chinese with English abstract).
      Zuo, R. G., Peng, Y., Li, T., et al., 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358 (in Chinese with English abstract).
      Zupan, J. R., Novič, M., Ruisánchez, I., 1997. Kohonen and Counterpropagation Artificial Neural Networks in Analytical Chemistry. Chemometrics and Intelligent Labosratory Systems, 38(1): 1-23. https://doi.org/10.1016/S0169-7439(97)00030-0
      郭艳军, 周哲, 林贺洵, 等, 2020. 基于深度学习的智能矿物识别方法研究. 地学前缘, 27(5): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202005006.htm
      李明超, 刘承照, 张野, 等, 2020. 耦合颜色和纹理特征的矿物图像数据深度学习模型与智能识别方法. 大地构造与成矿学, 44(2): 203-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202002005.htm
      彭伟航, 白林, 商世为, 等, 2019. 基于改进InceptionV3模型的常见矿物智能识别. 地质通报, 38(12): 2059-2066. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201912015.htm
      吴承炜, 史如晋, 曾万聃, 2020. 基于Siamese网络的矿物拉曼光谱识别. 激光与光电子学进展, 57(9): 271-277. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202009036.htm
      徐述腾, 周永章, 2018. 基于深度学习的镜下矿石矿物的智能识别实验研究. 岩石学报, 34(11): 3244-3252. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201811010.htm
      徐永洋, 李孜轩, 谢忠, 等, 2020. 基于半监督神经网络的铜矿预测方法. 地球科学, 45(12): 4563-4573. doi: 10.3799/dqkx.2020.297
      叶润青, 牛瑞卿, 张良培, 等, 2011. 基于图像分类的矿物含量测定及精度评价. 中国矿业大学学报, 40(5): 810-815, 822. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201105024.htm
      张夏林, 吴冲龙, 周琦, 等, 2020. 贵州超大型锰矿集区的多尺度三维地质建模. 地球科学, 45(2): 634-644. doi: 10.3799/dqkx.2018.384
      张旭, 于明鑫, 祝连庆, 等, 2020. 基于全光衍射深度神经网络的矿物拉曼光谱识别方法. 红外与激光工程, 49(10): 168-175. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202010020.htm
      赵启明, 王睿, 滕奇志, 等, 2015. 基于岩石薄片偏光序列图的颗粒成分分析. 太赫兹科学与电子信息学报, 13(2): 285-290. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201502021.htm
      赵永翼, 申莹, 王菲, 2020. 基于CART和PU算法的矿石矿物的智能识别. 沈阳师范大学学报(自然科学版), 38(2): 176-182. doi: 10.3969/j.issn.1673-5862.2020.02.013
      左仁广, 彭勇, 李童, 等, 2021. 基于深度学习的地质找矿大数据挖掘与集成的挑战. 地球科学, 46(1): 350-358. doi: 10.3799/dqkx.2020.111
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(2)  / Tables(2)

      Article views (3179) PDF downloads(385) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return