• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 3
    Mar.  2021
    Turn off MathJax
    Article Contents
    Yuan Ye, Zhao Minghui, He Enyuan, Guan Huixin, Gao Jinwei, Zhang Jiazheng, 2021. The Crustal Structures and Rift-Breakup Models of Typical Rifted Margins. Earth Science, 46(3): 801-816. doi: 10.3799/dqkx.2020.361
    Citation: Yuan Ye, Zhao Minghui, He Enyuan, Guan Huixin, Gao Jinwei, Zhang Jiazheng, 2021. The Crustal Structures and Rift-Breakup Models of Typical Rifted Margins. Earth Science, 46(3): 801-816. doi: 10.3799/dqkx.2020.361

    The Crustal Structures and Rift-Breakup Models of Typical Rifted Margins

    doi: 10.3799/dqkx.2020.361
    • Received Date: 2020-11-15
    • Publish Date: 2021-03-01
    • As an important part of Wilson Cycles, the rifted margin is a critical area in the study of plate tectonics and its evolution. By comparing the crustal structure characteristics and evolution process in three typical rifted margins (magma-rich, magma-poor, magma-intermediate), the main factors, e.g., tectonism, magmatic activity, pre-existing structure and so on, are considered to control the formation of different types of rifted margins. In view of the complex tectonic properties and evolution mechanism of the northern margin of the South China Sea (SCS), We propose the key scientific questions and direction for the future: (a) The northern margin of the SCS has a special mechanism possessing partial characteristics of both magma-poor and magma-rich margin; (b) whether the abundant magmatic activities and serpentined mantle exhumation coexist in the northern SCS margin; (c) it is necessary to carry out 3D deep seismic exploration integrated with physical and numerical simulation, so as to establish a scientific and credible geological model of rifting and breakup in the northern SCS margin.

       

    • loading
    • Bauer, K., Neben, S., Schreckenberger, B., et al., 2000. Deep Structure of the Namibia Continental Margin as Derived from Integrated Geophysical Studies. Journal of Geophysical Research: Solid Earth, 105(B11): 25829-25853. https://doi.org/10.1029/2000JB900227
      Bhattacharya, G. C., Chaubey, A. K., Murty, G. P. S., et al., 1994. Evidence for Seafloor Spreading in the Laxmi Basin, Northeastern Arabian Sea. Earth and Planetary Science Letters, 125(1-4): 211-220. https://doi.org/10.1016/0012-821X(94)90216-X
      Blaich, O. A., Faleide, J. I., Tsikalas, F., 2011. Crustal Breakup and Continent-Ocean Transition at South Atlantic Conjugate Margins. Journal of Geophysical Research: Solid Earth, 116(B1): B01402. https://doi.org/10.1029/2010JB007686
      Boillot, G., Agrinier, P., Beslier, M.O., et al., 1995. A Lithospheric Syn-Rift Shear Zone at the Ocean-Continent Transition: Preliminary Results of the GALINAUTE II Cruise (Nautile Dives on the Galicia Bank, Spain). Comptes Rendus - Academie Des Sciences, Serie II: Sciences De La Terre et Des Planetes, 321(12): 1171-1178 http://www.researchgate.net/publication/284977955_A_lithospheric_syn-rift_shear_zone_at_the_ocean-continent_transition_Preliminary_results_of_the_GALINAUTE_II_cruise_Nautile_dives_on_the_Galicia_Bank_Spain
      Bradley, D. C., 2008. Passive Margins through Earth History. Earth-Science Reviews, 91(1-4): 1-26. https://doi.org/10.1016/j.earscirev.2008.08.001
      Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92JB02280
      Brune, S., Heine, C., Clift, P. D., et al., 2017. Rifted Margin Architecture and Crustal Rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea. Marine and Petroleum Geology, 79: 257-281. https://doi.org/10.1016/j.marpetgeo.2016.10.018
      Campbell, I. H., 2005. Large Igneous Provinces and the Mantle Plume Hypothesis. Elements, 1(5): 265-269. https://doi.org/10.2113/gselements.1.5.265
      Clift, P.D., Lin, J., 2001b. Preferential Mantle Lithospheric Extension under the South China Margin. Marine and Petroleum Geology, 18(8): 929-945. https://doi.org/10.1016/S0264-8172(01)00037-X
      Clift, P. D., Lin, J., Party, O.L.S., 2001a. Patterns of Extension and Magmatism along the Continent-Ocean Boundary, South China Margin. Geological Society, London, Special Publications, 187(1): 489-510. https://doi.org/10.1144/gsl.sp.2001.187.01.24
      Coffin, M. F., Eldholm, O., 1994. Large Igneous Provinces: Crustal Structure, Dimensions, and External Consequences. Reviews of Geophysics, 32(1): 1-36. https://doi.org/10.1029/93RG02508
      Coltice, N., Phillips, B. R., Bertrand, H., et al., 2007. Global Warming of the Mantle at the Origin of Flood Basalts over Supercontinents. Geology, 35(5): 391-394. https://doi.org/10.1130/g23240a.1
      Contrucci, I., Matias, L., Moulin, M., et al., 2004. Deep Structure of the West African Continental Margin (Congo, Zaïre, Angola), between 5°S and 8°S, from Reflection/Refraction Seismics and Gravity Data. Geophysical Journal International, 158(2): 529-553. https://doi.org/10.1111/j.1365-246X.2004.02303.x
      Cowie, L., Angelo, R. M., Kusznir, N., et al., 2017. Structure of the Ocean-Continent Transition, Location of the Continent-Ocean Boundary and Magmatic Type of the Northern Angolan Margin from Integrated Quantitative Analysis of Deep Seismic Reflection and Gravity Anomaly Data. Geological Society, London, Special Publications, 438(1): 159-176. https://doi.org/10.1144/sp438.6
      Cowie, P. A., Underhill, J. R., Behn, M. D., et al., 2005. Spatio-Temporal Evolution of Strain Accumulation Derived from Multi-Scale Observations of Late Jurassic Rifting in the Northern North Sea: A Critical Test of Models for Lithospheric Extension. Earth and Planetary Science Letters, 234(3-4): 401-419. https://doi.org/10.1016/j.epsl.2005.01.039
      Davison, I., 2007. Geology and Tectonics of the South Atlantic Brazilian Salt Basins. Geological Society, London, Special Publications, 272(1): 345-359. https://doi.org/10.1144/gsl.sp.2007.272.01.18
      Dean, S. M., Minshull, T. A., Whitmarsh, R. B., et al., 2000. Deep Structure of the Ocean-Continent Transition in the Southern Iberia Abyssal Plain from Seismic Refraction Profiles: The IAM-9 Transect at 40°20'N. Journal of Geophysical Research: Solid Earth, 105(B3): 5859-5885. https://doi.org/10.1029/1999JB900301
      Demercian, S., Szatmari, P., Cobbold, P. R., 1993. Style and Pattern of Salt Diapirs due to Thin-Skinned Gravitational Gliding, Campos and Santos Basins, Offshore Brazil. Tectonophysics, 228(3-4): 393-433. https://doi.org/10.1016/0040-1951(93)90351-J
      Ding, W. W., Sun, Z., Mohn, G., et al., 2020. Lateral Evolution of the Rift-to-Drift Transition in the South China Sea: Evidence from Multi-Channel Seismic Data and IODP Expeditions 367 & 368 Drilling Results. Earth and Planetary Science Letters, 531: 115932. https://doi.org/10.1016/j.epsl.2019.115932
      Dupré, S., Cloetingh, S., Bertotti, G., 2011. Structure of the Gabon Margin from Integrated Seismic Reflection and Gravity Data. Tectonophysics, 506(1-4): 31-45. https://doi.org/10.1016/j.tecto.2011.04.009
      Eldholm, O., Grue, K., 1994. North Atlantic Volcanic Margins: Dimensions and Production Rates. Journal of Geophysical Research: Solid Earth, 99(B2): 2955-2968. https://doi.org/10.1029/93JB02879
      Eldholm, O., Skogseid, J., Planke, S., et al., 1995. Volcanic Margin Concepts. In: Banda, E., Torné, M., Talwani, M., eds., Rifted Ocean-Continent Boundaries. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0043-4_1
      Elkins-Tanton, L. T., Hager, B. H., 2005. Giant Meteoroid Impacts can Cause Volcanism. Earth and Planetary Science Letters, 239(3-4): 219-232. https://doi.org/10.1016/j.epsl.2005.07.029
      Fan, C. Y., Xia, S. H., Zhao, F., et al., 2017. New Insights into the Magmatism in the Northern Margin of the South China Sea: Spatial Features and Volume of Intraplate Seamounts. Geochemistry, Geophysics, Geosystems, 18(6): 2216-2239. https://doi.org/10.1002/2016GC006792
      Fernandez, O., Olaiz, A., Cascone, L., et al., 2020. Geophysical Evidence for Breakup Volcanism in the Angola and Gabon Passive Margins. Marine and Petroleum Geology, 116: 104330. https://doi.org/10.1016/j.marpetgeo.2020.104330
      Franke, D., 2013. Rifting, Lithosphere Breakup and Volcanism: Comparison of Magma-Poor and Volcanic Rifted Margins. Marine and Petroleum Geology, 43: 63-87. https://doi.org/10.1016/j.marpetgeo.2012.11.003
      Gao, J. W., Wu, S. G., McIntosh, K., et al., 2015. The Continent-Ocean Transition at the Mid-Northern Margin of the South China Sea. Tectonophysics, 654: 1-19. https://doi.org/10.1016/j.tecto.2015.03.003
      Geoffroy, L., 2005. Volcanic Passive Margins. Comptes Rendus Geoscience, 337(16): 1395-1408. https://doi.org/10.1016/j.crte.2005.10.006
      Geoffroy, L., Burov, E. B., Werner, P., 2015. Volcanic Passive Margins: Another Way to Break up Continents. Scientific Reports, 5(1): 1-12. https://doi.org/10.1038/srep14828
      Geoffroy, L., Guan, H. X., Gernigon, L., et al., 2020. The Extent of Continental Material in Oceans: C-Blocks and the Laxmi Basin Example. Geophysical Journal International, 222(3): 1471-1479. https://doi.org/10.1093/gji/ggaa215
      González-Fernández, A., Dañobeitia, J. J., Delgado-Argote, L. A., et al., 2005. Mode of Extension and Rifting History of Upper Tiburón and Upper Delfín Basins, Northern Gulf of California. Journal of Geophysical Research: Solid Earth, 110(B1): B01313. https://doi.org/10.1029/2003JB002941
      Guan, H. X., Geoffroy, L., Gernigon, L., et al., 2019. Magmatic Ocean-Continent Transitions. Marine and Petroleum Geology, 104: 438-450. https://doi.org/10.1016/j.marpetgeo.2019.04.003
      Huang, C., Zhang, N., Li, Z. X., et al., 2019. Modeling the Inception of Supercontinent Breakup: Stress State and the Importance of Orogens. Geochemistry, Geophysics, Geosystems, 20(11): 4830-4848. https://doi.org/10.1029/2019GC008538
      Huismans, R., Beaumont, C., 2011. Depth-Dependent Extension, Two-Stage Breakup and Cratonic Underplating at Rifted Margins. Nature, 473(7345): 74-78. https://doi.org/10.1038/nature09988
      Larsen, H. C., Mohn, G., Nirrengarten, M., et al., 2018. Rapid Transition from Continental Breakup to Igneous Oceanic Crust in the South China Sea. Nature Geoscience, 11(10): 782-789. https://doi.org/10.1038/s41561-018-0198-1
      Li, C.F., Lin, J., Kulhanek, D.K., et al., 2015. Proceedings of the International Ocean Discovery Program, 349: South China Sea Tectonics. International Ocean Discovery Program, College Station.
      Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014GC005567
      Li, J.B., Ding, W.W., Gao, J.Y., et al., 2011. Cenozoic Evolution Model of the Sea-Floor Spreading in South China Sea: New Constraints from High Resolution Geophysical Data. Chinese Journal of Geophysics, 54(12): 3004-3015(in Chinese with English abstract). doi: 10.1002/cjg2.1672/full
      Menzies, M. A., Klemperer, S. L., Ebinger, C. J., et al., 2002. Characteristics of Volcanic Rifted Margins. In: Menzies, M. A., Klemperer, S. L., Ebinger, C. J., et al., eds., Volcanic Rifted Margins. Geological Society of America, Boulder. https://doi.org/10.1130/0-8137-2362-0.1
      Minshull, T. A., 2009. Geophysical Characterisation of the Ocean-Continent Transition at Magma-Poor Rifted Margins. Comptes Rendus Geoscience, 341(5): 382-393. https://doi.org/10.1016/j.crte.2008.09.003
      Mohriak, W. U., Bassetto, M., Vieira, I. S., 1998. Crustal Architecture and Tectonic Evolution of the Sergipe-Alagoas and Jacuípe Basins, Offshore Northeastern Brazil. Tectonophysics, 288(1-4): 199-220. https://doi.org/10.1016/S0040-1951(97)00294-1
      Moulin, M., Aslanian, D., Olivet, J. L., et al., 2005. Geological Constraints on the Evolution of the Angolan Margin Based on Reflection and Refraction Seismic Data (ZaïAngo Project). Geophysical Journal International, 162(3): 793-810. https://doi.org/10.1111/j.1365-246X.2005.02668.x
      Mutter, J. C., Talwani, M., Stoffa, P. L., 1982. Origin of Seaward-Dipping Reflectors in Oceanic Crust off the Norwegian Margin by "Subaerial Sea-Floor Spreading". Geology, 10(7): 353-357. https://doi.org/10.1130/0091-7613(1982)10353: oosrio>2.0.co;2 doi: 10.1130/0091-7613(1982)10353:oosrio>2.0.co;2
      Norton, I. O., Carruthers, D. T., Hudec, M. R., 2016. Rift to Drift Transition in the South Atlantic Salt Basins: a New Flavor of Oceanic Crust. Geology, 44(1): 55-58. https://doi.org/10.1130/g37265.1
      Paton, D. A., Pindell, J., McDermott, K., et al., 2017. Evolution of Seaward-Dipping Reflectors at the Onset of Oceanic Crust Formation at Volcanic Passive Margins: Insights from the South Atlantic. Geology, 45(5): 439-442. https://doi.org/10.1130/g38706.1
      Pérez-Gussinyé, M., 2013. A Tectonic Model for Hyperextension at Magma-Poor Rifted Margins: an Example from the West Iberia-Newfoundland Conjugate Margins. Geological Society, London, Special Publications, 369(1): 403-427. https://doi.org/10.1144/sp369.19
      Pérez-Gussinyé, M., Morgan, J. P., Reston, T. J., et al., 2006. The Rift to Drift Transition at Non-Volcanic Margins: Insights from Numerical Modelling. Earth and Planetary Science Letters, 244(1-2): 458-473. https://doi.org/10.1016/j.epsl.2006.01.059
      Pérez-Gussinyé, M., Ranero, C. R., Reston, T. J., et al., 2003. Mechanisms of Extension at Nonvolcanic Margins: Evidence from the Galicia Interior Basin, West of Iberia. Journal of Geophysical Research: Solid Earth, 108(B5): 2245. https://doi.org/10.1029/2001JB000901
      Pérez-Gussinyé, M., Reston, T. J., 2001. Rheological Evolution during Extension at Nonvolcanic Rifted Margins: Onset of Serpentinization and Development of Detachments Leading to Continental Breakup. Journal of Geophysical Research: Solid Earth, 106(B3): 3961-3975. https://doi.org/10.1029/2000JB900325
      Péron-Pinvidic, G., Manatschal, G., Masini, E., et al., 2015. Unravelling the Along-Strike Variability of the Angola-Gabon Rifted Margin: A Mapping Approach. Geological Society, London, Special Publications, 438. https://doi.org/10.1144/SP438.1
      Péron-Pinvidic, G., Manatschal, G., Minshull, T. A., et al., 2007. Tectonosedimentary Evolution of the Deep Iberia-Newfoundland Margins: Evidence for a Complex Breakup History. Tectonics, 26(2): TC2011. https://doi.org/10.1029/2006TC001970
      Pickup, S. L. B., Whitmarsh, R. B., Fowler, C. M. R., et al., 1996. Insight into the Nature of the Ocean-Continent Transition off West Iberia from a Deep Multichannel Seismic Reflection Profile. Geology, 24(12): 1079-1082. https://doi.org/10.1130/0091-7613(1996)0241079: iitnot>2.3.co;2 doi: 10.1130/0091-7613(1996)0241079:iitnot>2.3.co;2
      Planke, S., Eldholm, O, 1994. Seismic Response and Construction of Seaward Dipping Wedges of Flood Basalts: Vøring Volcanic Margin. Journal of Geophysical Research: Solid Earth, 99(B5): 9263-9278. https://doi.org/10.1029/94JB00468
      Qiu, X. L., Ye, S. Y., Wu, S. M., et al., 2001. Crustal Structure across the Xisha Trough, Northwestern South China Sea. Tectonophysics, 341(1-4): 179-193. https://doi.org/10.1016/S0040-1951(01)00222-0
      Quirk, D. G., Hertle, M., Jeppesen, J. W., et al., 2013. Rifting, Subsidence and Continental Breakup above a Mantle Plume in the Central South Atlantic. Geological Society, London, Special Publications, 369(1): 185-214. https://doi.org/10.1144/sp369.20
      Quirk, D. G., Shakerley, A., Howe, M. J., 2014. A Mechanism for Construction of Volcanic Rifted Margins during Continental Breakup. Geology, 42(12): 1079-1082. https://doi.org/10.1130/g35974.1
      Ranero, C. R., Pérez-Gussinyé, M., 2010. Sequential Faulting Explains the Asymmetry and Extension Discrepancy of Conjugate Margins. Nature, 468(7321): 294-299. https://doi.org/10.1038/nature09520.[PubMed]
      Ren, J.Y., Pang, X., Yu, P., et al., 2018. Characteristics and Formation Mechanism of Deepwater and Ultra-Deepwater Basins in the Northern Continental Margin of the South China Sea. Chinese Journal of Geophysics, 61(12): 4901-4920 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201812016.htm
      Reston, T. J., 2005. Polyphase Faulting during the Development of the West Galicia Rifted Margin. Earth and Planetary Science Letters, 237(3-4): 561-576. https://doi.org/10.1016/j.epsl.2005.06.019
      Reston, T. J., 2007. The Formation of Non-Volcanic Rifted Margins by the Progressive Extension of the Lithosphere: The Example of the West Iberian Margin. Geological Society, London, Special Publications, 282(1): 77-110. https://doi.org/10.1144/sp282.5
      Reston, T. J., 2009. The Structure, Evolution and Symmetry of the Magma-Poor Rifted Margins of the North and Central Atlantic: A Synthesis. Tectonophysics, 468(1-4): 6-27. https://doi.org/10.1016/j.tecto.2008.09.002
      Reston, T.J., McDermott, K., 2014. An Assessment of the Cause of the 'Extension Discrepancy' with Reference to the West Galicia Margin. Basin Research, 26(1): 135-153. https://doi.org/10.1111/bre.12042
      Ru, K., Pigott, J.D., 1986. Episodic Rifting and Subsidence in the South China Sea. AAPG Bulletin. 70(9): 1136-1155. http://ci.nii.ac.jp/naid/80003134760
      Sawyer, D. S., Coffin, M. F., Reston, T. J., et al., 2007. COBBOOM: The Continental Breakup and Birth of Oceans Mission. Scientific Drilling, 5: 13-25. https://doi.org/10.5194/sd-5-13-2007
      Sibuet, J. C., Srivastava, S., Manatschal, G., 2007. Exhumed Mantle-Forming Transitional Crust in the Newfoundland-Iberia Rift and Associated Magnetic Anomalies. Journal of Geophysical Research: Solid Earth, 112(B6): B06105. https://doi.org/10.1029/2005JB003856
      Stica, J. M., Zalán, P. V., Ferrari, A. L., 2014. The Evolution of Rifting on the Volcanic Margin of the Pelotas Basin and the Contextualization of the Paraná-Etendeka LIP in the Separation of Gondwana in the South Atlantic. Marine and Petroleum Geology, 50: 1-21. https://doi.org/10.1016/j.marpetgeo.2013.10.015
      Sun, Z., Jian, Z., Stock, J.M., et al., 2018. Proceedings of the International Ocean Discovery Program, vol. 367/368, South China Sea Rifted Margin. International Ocean Discovery Program, College Station.
      Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
      Sutra, E., Manatschal, G., 2012. How does the Continental Crust Thin in a Hyperextended Rifted Margin? Insights from the Iberia Margin. Geology, 40(2): 139-142. https://doi.org/10.1130/g32786.1
      Talwani, M., Abreu, V., 2000. Inferences Regarding Initiation of Oceanic Crust Formation from the US East Coast Margin and Conjugate South Atlantic Margins. In: Mohriak, W., Talwani, M., eds., Atlantic Rifts and Continental Margins. AGU, Washington, D. C. . http://doi.org/10.1029/GM115p0211
      Tucholke, B. E., Sawyer, D. S., Sibuet, J. C., 2007. Breakup of the Newfoundland-Iberia Rift. Geological Society, London, Special Publications, 282(1): 9-46. https://doi.org/10.1144/sp282.2
      Unternehr, P., Péron-Pinvidic, G., Manatschal, G., et al., 2010. Hyper-Extended Crust in the South Atlantic: In Search of a Model. Petroleum Geoscience, 16(3): 207-215. https://doi.org/10.1144/1354-079309-904
      Wan, X. L., Li, C. F., Zhao, M. H., et al., 2019. Seismic Velocity Structure of the Magnetic Quiet Zone and Continent-Ocean Boundary in the Northeastern South China Sea. Journal of Geophysical Research: Solid Earth, 124(11): 11866-11899. https://doi.org/10.1029/2019JB017785
      Wang, P.X., 2012. Tracing the Life History of a Marginal Sea—On the "South China Sea Deep" Research Program. Chinese Science Bulletin, 57(20): 1807-1826 (in Chinese). doi: 10.1360/csb2012-57-20-1807
      Wang, P. X., Huang, C. Y., Lin, J., et al., 2019. The South China Sea is not a Mini-Atlantic: Plate-Edge Rifting vs Intra-Plate Rifting. National Science Review, 6(5): 902-913. https://doi.org/10.1093/nsr/nwz135
      Wang, P.X., Jian, Z.M., 2019. Exploring the Deep South China Sea: Retrospects and Prospects. Science in China (Series D), 49(10): 1590-1606 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JDXG201910001
      Wang, T. K., Chen, M. K., Lee, C. S., et al., 2006. Seismic Imaging of the Transitional Crust across the Northeastern Margin of the South China Sea. Tectonophysics, 412(3-4): 237-254. https://doi.org/10.1016/j.tecto.2005.10.039
      Wei, X.D., Ruan, A.G. Zhao, M.H., et al., 2011. A Wide-Angle OBS Profile across the Dongsha Uplift and Chaoshan Depression in the Mid-Northern South China Sea. Chinese Journal of Geophysics, 54(6): 1149-1160. https://doi.org/10.1002/cjg2.1691
      White, R.S., McKenzie, D., 1989. Magmatism at Rift Zones: The Generation of Volcanic Continental Margins and Flood Basalts. Journal of Geophysical Research: Solid Earth, 94(B6): 7685-7729. https://doi.org/10.1029/JB094iB06p07685
      White, R. S., Smith, L. K., 2009. Crustal Structure of the Hatton and the Conjugate East Greenland Rifted Volcanic Continental Margins, NE Atlantic. Journal of Geophysical Research: Solid Earth, 114(B2): B02305. https://doi.org/10.1029/2008JB005856
      Whitmarsh, R. B., Manatschal, G., Minshull, T. A., 2001. Evolution of Magma-Poor Continental Margins from Rifting to Seafloor Spreading. Nature, 413(6852): 150-154. https://doi.org/10.1038/35093085
      Whitmarsh, R. B., White, R. S., Horsefield, S. J., et al., 1996. The Ocean-Continent Boundary off the Western Continental Margin of Iberia: Crustal Structure West of Galicia Bank. Journal of Geophysical Research: Solid Earth, 101(B12): 28291-28314. https://doi.org/10.1029/96JB02579
      Xia, S. H., Zhao, D. P., Sun, J. L., et al., 2016. Teleseismic Imaging of the Mantle BeneathSouthernmost China: New Insights into the Hainan Plume. Gondwana Research, 36: 46-56. https://doi.org/10.1016/j.gr.2016.05.003
      Xia, S. H., Zhao, F., Zhao, D. P., et al., 2018. Crustal Plumbing System of Post-Rift Magmatism in the Northern Margin of South China Sea: New Insights from Integrated Seismology. Tectonophysics, 744: 227-238. https://doi.org/10.1016/j.tecto.2018.07.002
      Yang, F.D., Zhang, J.Z., Du, F., et al., 2020. A New Method for Shots and OBSs' Relocation Applying in Three-Dimensional Seismic Survey. Chinese Journal of Geophysics, 63(2): 766-777 (in Chinese with English abstract).
      Yu, X., Liu, Z. F., 2020. Non-Mantle-Plume Process Caused the Initial Spreading of the South China Sea. Scientific Reports, 10: 8500. https://doi.org/10.1038/s41598-020-65174-y
      Zhang, Z. J., Wang, Y. H., 2007. Crustal Structure and Contact Relationship Revealed from Deep Seismic Sounding Data in South China. Physics of the Earth and Planetary Interiors, 165(1-2): 114-126. https://doi.org/10.1016/j.pepi.2007.08.005
      Zhao, M.H., Du, F., Wang, Q., et al., 2018. Current Status and Challenges for Three-Dimensional Deep Seismic Survey in the South China Sea. Earth Science, 43(10): 3749-3761 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201810034.htm
      Zhao, M. H., Qiu, X. L., Xia, S. H., et al., 2010. Seismic Structure in the Northeastern South China Sea: S-Wave Velocity and Vp/Vs Ratios Derived from Three-Component OBS Data. Tectonophysics, 480(1-4): 183-197. https://doi.org/10.1016/j.tecto.2009.10.004
      Zhou, D., Ru, K., Chen, H. Z., 1995. Kinematics of Cenozoic Extension on the South China Sea Continental Margin and Its Implications for the Tectonic Evolution of the Region. Tectonophysics, 251(1-4): 161-177. https://doi.org/10.1016/0040-1951(95)00018-6
      Zhu, J. J., Qiu, X. L., Kopp, H., et al., 2012. Shallow Anatomy of a Continent-Ocean Transition Zone in the Northern South China Sea from Multichannel Seismic Data. Tectonophysics, 554-557: 18-29. https://doi.org/10.1016/j.tecto.2012.05.027
      李家彪, 丁巍伟, 高金耀, 等, 2011. 南海新生代海底扩张的构造演化模式: 来自高分辨率地球物理数据的新认识. 地球物理学报, 54(12): 3004-3015. doi: 10.3969/j.issn.0001-5733.2011.12.003
      任建业, 庞雄, 于鹏, 等, 2018. 南海北部陆缘深水-超深水盆地成因机制分析. 地球物理学报, 61(12): 4901-4920. doi: 10.6038/cjg2018L0558
      汪品先, 2012. 追踪边缘海的生命史: "南海深部计划"的科学目标. 科学通报, 57(20): 1807-1826. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220002.htm
      汪品先, 翦知湣, 2019. 探索南海深部的回顾与展望. 中国科学(D辑), 49(10): 1590-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910006.htm
      杨富东, 张佳政, 杜峰, 等, 2020. 三维OBS探测实验中炮点和OBS位置校正新方法. 地球物理学报, 63(2): 766-777. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202002042.htm
      赵明辉, 杜峰, 王强, 等, 2018. 南海海底地震仪三维深地震探测的进展及挑战. 地球科学, 43(10): 3749-3761. doi: 10.3799/dqkx.2018.573
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(1)

      Article views (1832) PDF downloads(176) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return