• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 4
    Apr.  2021
    Turn off MathJax
    Article Contents
    Zhou Yun, Huang Huilan, Yu Yushuai, Li Fang, Tan Jing, 2021. Constraints on the Evolution of Ore-Forming Fluids from Microthermometric and In Situ LA-ICP-MS Analyses of Fluid Inclusions in Xitian Tungsten Tin Polymetallic Deposit, Hunan Province. Earth Science, 46(4): 1248-1268. doi: 10.3799/dqkx.2020.364
    Citation: Zhou Yun, Huang Huilan, Yu Yushuai, Li Fang, Tan Jing, 2021. Constraints on the Evolution of Ore-Forming Fluids from Microthermometric and In Situ LA-ICP-MS Analyses of Fluid Inclusions in Xitian Tungsten Tin Polymetallic Deposit, Hunan Province. Earth Science, 46(4): 1248-1268. doi: 10.3799/dqkx.2020.364

    Constraints on the Evolution of Ore-Forming Fluids from Microthermometric and In Situ LA-ICP-MS Analyses of Fluid Inclusions in Xitian Tungsten Tin Polymetallic Deposit, Hunan Province

    doi: 10.3799/dqkx.2020.364
    • Received Date: 2020-06-19
    • Publish Date: 2021-04-15
    • In order to understand the evolution process of ore-forming fluid and the migration mechanism of ore-forming elements in Xitian tungsten tin polymetallic deposit, to further reveal the ore-forming mechanism and guide the next exploration work in this area. The fluid inclusions of wolframite, cassiterite and transparent minerals were studied by petrographic observation, infrared microthermometry and in situ LA-ICP-MS analysis of fluid inclusions. The results show that fluid-melt inclusions are developed in beryl and wolframite in Xitian tungsten tin polymetallic deposit, and the highest homogenization temperature is 760℃. At the early stage of mineralization, the fluid homogenization temperature is 360-500℃, the salinity is mainly 28.44%-41.50% NaCleqv. At the main mineralization stage, the homogenization temperature is 280-450℃, the salinity is mainly 3.0%-20.03% NaCleqv. At the late mineralization stage, the homogenization temperature is 120-280℃, and the salinity is 0.35%-6.58% NaCleqv. LA-ICP-MS analysis shows that W, Cu, Mo elements are preferentially enriched in the volatile, while Pb, Zn, Sn, Fe, Mn elements are preferentially enriched in the high salinity brine phase. The ore forming fluid in Xitian W-Sn polymetallic deposit comes from Yanshanian granite, and the mineralization of W-Sn started from the stage of magma-hydrothermal transition, and the ore-forming fluid has the characteristics of high temperature, high salinity and rich CO2. The ore-forming fluid comes from the dissolution of magmatic fluid, which has experienced two immiscible processes in the evolution process. In the process of immiscible phase separation, the ore-forming elements migrate selectively and distribute unevenly in each phase. Fluid immiscibility, water rock reaction, fluid mixing and fluid cooling are the main reasons for the precipitation of W-Sn minerals in the deposit.

       

    • loading
    • Cai, X.H., Jia, B.H., 2006. Discovery of the Xitian Tin Deposit, Hunan, and Its Ore Petential. Geology in China, 33(5): 1100-1108 (in Chinese with English abstract).
      Cao, J.Y., Wu, Q.H., Yang, X.Y., et al., 2020. Geochemical Factors Revealing the Differences between the Xitian and Dengfuxian Composite Plutons, Middle Qin-Hang Belt: Implications to the W-Sn Mineralization. Ore Geology Reviews, 118: 103353. https://doi.org/10.1016/j.oregeorev.2020.103353
      Chen, D., Ma, A.J., Liu, W., et al., 2013. Research on U-Pb Chronology in Xitian Pluton of Hunan Province. Geoscience-Journal of Graduate School, China University of Geosciences, 27(4): 819-830(in Chinese with English abstract).
      Dong, C.G., 2018. Studies on Granitic and Metallogenic Chronology and Geodynamics of the Xitian Tin-Tungsten and Dengfuxian Tungsten Deposits, Hunan Province, China(Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
      Fu, J.M., Cheng, S.B., Lu, Y.Y., et al., 2012. Geochronology of the Greisen-Quartz-Vein Type Tungsten-Tin Deposit and Its Host Granite in Xitian, Hunan Province. Geology and Prospecting, 48(2): 313-320(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201202014.htm
      Fu, J.M., Wu, S.C., Xu, D.M., et al., 2009. Reconstraint from Zircon SHRIMP U-Pb Dating on the Age of Magma Intrusion and Mineralization in Xitian Tungsten-Tin Polymetallic Orefield, Eastern Hunan Province. Geology and Mineral Resources of South China, 25(3): 1-7(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC200903001.htm
      Guo, C.L., Li, C., Wu, S.C., et al., 2014. Molybdenite Re-Os Isotopic Dating of Xitian Deposit in Hunan Province and Its Geological Significance. Rock and Mineral Analysis, 33(1): 142-152(in Chinese with English abstract).
      Guo, W., Lin, X., Hu, S.H., et al., 2020. Advances in LA-ICP-MS Analysis for Individual Fluid Inclusions and Applications. Earth Science, 45(5): 1362-1374 (in Chinese with English abstract).
      Halter, W.E., Webster, J. D., 2004. The Magmatic to Hydrothermal Transition and Its Bearing on Ore-Forming Systems. Chemical Geology, 210(1-4): 1-6. http://dx.doi.org/10.1016/j.chemgeo.2004.06.001
      He, M., Liu, Q., Sun, J.F., et al., 2018. Geochemical Characteristics and Tectonic Significance of the Xitian Indosinian Granites in Eastern Hunan Province, South China. Acta Petrologica Sinica, 34(7): 2065-2086(in Chinese with English abstract).
      Lan, T.G., Hu, R.Z., Fan, H.R., et al., 2017. In-Situ Analysis of Major and Trace Elements in Fluid Inclusion and Quartz: LA-ICP-MS Method and Applications to Ore Deposits. Acta Petrologica Sinica, 33 (10): 3239-3262 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252013542.html
      Li, X. Y., Zhang, C., Wang, L. X., et al., 2020. Experiments on the Saturation of Fluorite in Magmatic Systems: Implications for Maximum F Concentration and Fluorine-Cation Bonding in Silicate Melt. Journal of Earth Science, 31(3): 456-467. https://doi.org/10.1007/s12583-020-1305-y
      Liang, X.Q., Dong, C.G., Jiang, Y., et al., 2016. Zircon U-Pb, Molybdenite Re-Os and Muscovite Ar-Ar Isotopic Dating of the Xitian W-Sn Polymetallic Deposit, Eastern Hunan Province, South China and Its Geological Significance. Ore Geology Reviews, 78: 85-100. http://dx.doi.org/10.1016/j.oregeorev.2016.03.018
      Liu, B., Li H., Wu Q.H., et al., 2019b. Double-Vein (Ore-Bearing vs. Ore-Free) Structures in the Xitian Ore Field, South China: Implications for Fluid Evolution and Mineral Exploration. Ore Geology Reviews, 115: 103181. https://doi.org/10.1016/j.oregeorev.2019. 103181. doi: 10.1016/j.oregeorev.2019.103181
      Liu, B., Wu Q.H., Li H., et al., 2019. The Yanshanian NE-Striking Fault Evolution and Its Implications on Mineralization in the Xitian W-Sn Polymetallic Ore Field, Hunan Province. Earth Science (in Chinese with English abstract). http://kns.cnki.net/kcms/detail/42.1874.P.20191120.1540.010.html
      Liu, B., Wu Q.H., Li H., et al., 2019a. Fault-Fluid Evolution in the Xitian W-Sn Ore Field (South China): Constraints from Scheelite Texture and Composition. Ore Geology Reviews, 114: 103140. https://doi.org/10.1016/j.oregeorev.2019. 103140. doi: 10.1016/j.oregeorev.2019.103140
      Liu, B., Wu Q.H., Li H., et al., 2020. Fault-Controlled Fluid Evolution in the Xitian W-Sn-Pb-Zn-Fluorite Mineralization System (South China): Insights from Fluorite Texture, Geochemistry and Geochronology. Ore Geology Reviews, 116 : 103233. http://dx.doi.org/10.1016/j.oregeorev.2019.103233
      Liu, G.Q., Wu, S.C., Du, A.D., et al., 2008. Metallogenic Ages of the Xitian Tung Sten-Tin Deposit, Eastern Hunan Province. Geotectonica et Metalogenia, 32(1): 63-71(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200801010.htm
      Liu, M., Qiu, H.N., Bai, X.J., et al., 2015. Fluid Inclusion Studies of Xintian Tin-Tungsten Polymetallic Deposit in Hunan Province. Mineral Deposits, 34(5): 981-998(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201505008.htm
      Long, B.L., Wu, S.C., Xu, H.H., 2009. Geological Characteristics and Exploration Potential of the Xitian W-Sn Polymetallic Deposit, Hunan Province. Geology and Prospecting, 45(3): 229-234(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200903001.htm
      Ma, L.Y., Fu, J.M., Wu, S.C., et al., 2008. 40Ar/39Ar Isotopic Dating of the Longshang Tin-Polymetallic Deposit, Xitian Orefield, Eastern Hunan. Chinese Geology, 35(4): 706-713(in Chinese with English abstract).
      Ma, T.Q., Bai, D.Y., Kuang, J., et al., 2005. Zircon SHRIMP Dating of the Xitian Granite Pluton, Chaling, Southeastern Hunan, and Its Geological Significance. Geologcal Bulletin of China, 24(5): 415-419(in Chinese with English abstract).
      Matthew, J.S., James, S.B., Luca, F., et al., 2009. Partitioning Behavior of Trace Elements Between Dacitic Melt and Plagioclase, Orthopyroxene, and Clinopyroxene Based on Laser Ablation ICPMS Analysis of Silicate Melt Inclusions. Geochimica et Cosmochimica Acta, 73(7): 2123-2141. https://doi.org/10.1016/j.gca.2009.01.009
      Ni, Y.J., Shan, Y.H., Wu, S.C., et al., 2014. Emplacement Mechanism of Indosinian Dengfuxian-Xitian Granite Pluton in Eastern Hunan, South China. Geotectonica et Metallogenia, 38(1): 82-93(in Chinese with English abstract).
      Niu, R., Liu, Q., Hou, Q.L., et al., 2015. Zircon U-Pb Geochronology of Xitian Granitic Pluton in Hunan Province and Its Constraints on the Metallogenic Ages of the Tungsten-Tin Deposit. Acta Petrologica Sinica, 31(9): 2620-2632(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201509012.htm
      Nockolds, R.K., Allen, R., 1953, The Geochemistry of Some Igneous Rock Series: Part 1 Calc-Alkali Rocks. Geochimica et Cosmochimica Acta, 4: 105-142. http://dx.doi.org/10.1016/0016-7037(53)90055-6
      Pan, J. Y., Ni, P. S., Wang, R.C., et al., 2019. Comparison of Fluid Processes in Coexisting Wolframite and Quartz from a Giant Vein-Type Tungsten Deposit, South China: Insights from Detailed Petrography and LA-ICP-MS Analysis of Fluid Inclusions. American Mineralogist, 104: 1092-1116. http://dx.doi.org/10.2138/am-2019-6958
      Pettkea, T., Audextat, A., Schaltegger, U., et al., 2005. Magmatic-to-Hydrothermal Crystallization in the W-Sn Mineralized Mole Granite (NSW, Australia) Part II: Evolving Zircon and Thorite Trace Element Chemistry. Chemical Geology, 220(3-4): 105-142. https://doi.org/10.1016/j.chemgeo.2005.02.017
      Schmidt, C., 2018. Formation of Hydrothermal Tin Deposits: Raman Spectroscopic Evidence for An Important Role of Aqueous Sn(IV) Species. Geochimica et Cosmochimica Acta, 220: 499-511. https://doi.org/10.1016/j.gca.2017.10.011
      Schmidt, C., Romer, R., Ueberwasser, C.C., et al., 2020. Partitioning of Sn and W Between Granitic Melt and Aqueous Fluid. Ore Geology Reviews, 117: 103263. https://doi.org/10.1016/j.oregeorev.2019.103263.
      Seo, J.H., Guillong, M., Heinrich, C.A., et al., 2009. The Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits. Earth and Planetary Science Letters, 282(1-4): 323-328. http://dx.doi.org/10.1016/j.epsl.2009.03.036
      Shen, K. Shu, L., Liu, P.R., et al., 2018. Origin and Significance of Mica-Bearing Fluid Inclusions in the Altered Wallrocks of the Wangjiazhuang Copper-Molybdenum Deposit, Zouping County, Shandong Province. Acta Petrologica Sinica, 34(12): 3509-3524 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201812004.htm
      Su, H.Z., Guo, C.L., Wu, S.C., et al., 2015. Magma-Hydrothermal Fluid Activity Duration and Material Sources in the Xitian Indosinian-Yanshanian Complex. Acta Geologica Sinica, 89(10): 1853-1872(in Chinese with English abstract).
      Ulrich, T., Günther, D., Heinrich, C.A., 1999. Gold Concentrations of Magmatic Brines and the Metal Budget of Porphyry Copper Deposits. Nature, 399 (6737): 676-679. http://dx.doi.org/10.1038/21406
      Veksler, I.V., 2004. Liquid Immiscibility and Its Role at the Magmatic-Hydrothermal Transition: A Summary of Experimental Studies. Chemical Geology, 210(1-4): 7-31. http://dx.doi.org/10.1016/j.chemgeo.2004.06.002
      Wang, L.J., Wang, Y.W., Wang, J.B., et al., 2006. Fluid Forming of a Dajing Tin-Polymetallic Deposit in Inner Mongolia: Evidence of a Individual Fluid Inclusion Component of LA-ICP-MS. Chinese Science Bulletin, 51(10): 1203-1210(in Chinese). doi: 10.1360/csb2006-51-10-1203
      Wang, M., Bai, X.J., Hu, R.G., et al., 2015. Direct Dating of Cassiterite in Xitian Tungsten-Tin Polymetallic Deposit, South-East Hunan, by 40Ar/39Ar Progressive Crushing. Geotectonica et Metallogenia, 39(6): 1049-1060(in Chinese with English abstract). http://www.cqvip.com/QK/90781X/201506/667605440.html
      Wang, X.D., Ni, P., Yuan, S.D., et al., 2012. Fluid Inclusion Studies of the Huangsha Quartz-Vein Type Tungsten Deposit, Jiangxi Province. Acta Petrologica Sinica, 28(1): 122-132(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ysxb98201201010
      Wang, Y.L., 2014. Early Yanshan Granitic Magmatic-hydrothermal Evolution and Tungsten Deposits Mineralization in Southeast Hunan(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Wu, S.C., Hong, Q.H., Long, W.P., et al., 2009. Geologiclal Features and Metallogenic Model of Xitian W-Sn Polymetallic Deposit, Hunan Province. Geology and Mineral Resources of South China, 25(2): 1-6(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC200902000.htm
      Xia, L.Q., 2002. Melt Inclusions in Magmatic Rocks. Earth Science Frontiers (China University of Geosciences, Beijing), 9(2): 403-414(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200202031.htm
      Xiong, Y.Q., Shao, Y.J., Liu J.P., et al., 2016. Ore-Forming Fluid of Quartz-Vein Type Tungsten Deposits, Xitian Orefield, Eastern Hunan, China. The Chinese Journal of Nonferrous Metals, 26(5): 1107-1119 (in Chinese with English abstract).
      Xiong, Y.Q., Shao, Y.J., Zou, H.D., et al., 2017. Ore-forming Mechanism of Quartz-Vein-Type W-Sn Deposits of the Xitian District in SE China: Implications from the Trace Element Analysis of Wolframite and Investigation of Fluid Inclusions. Ore Geology Reviews, 83: 152-173. http://dx.doi.org/10.1016/j.oregeorev.2016.12.007
      Xu, X.W., Wu, Q., Huang, X.F., et al., 2012. Formation Mechanism and Evolution Process of Copper-Rich Porphyry Magma. Acta Petrologica Sinica, 28(2): 421-432(in Chinese with English abstract). http://www.oalib.com/paper/1474532
      Yang, J.H., Kang, L.F., Liu, L., et al., 2019. Tracing the Origin of Ore-Forming Fluids in the Piaotang Tungsten Deposit, South China: Constraints from in-Situ Analyses of Wolframite and Individual Fluid Inclusion. Ore Geology Reviews, 111: 102939. https://doi.org/10.1016/j.oregeorev.2019.102939.
      Yang, X.J., Wu, S.C., Fu, J.M., et al., 2007. Fluid Inclusion Studies of Longshang Tin-Polymetallic Deposit in Xitian Ore Field, Eastern Hunan Province. Mineral Deposits, 26(5): 501-511 (in Chinese with English abstract).
      Yu, Z.F., 2015. Characteristics and Evolution of Ore-Forming Fluids and Mineralization Model for Yaogangxian and Xitian Quartz Vein Type Tungsten Deposit, Hunan(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Zajacz, Z., Halter, W., 2009. Copper Transport by High Temperature, Sulfur-Rich Magmatic Vapor: Evidence from Silicate Melt and Vapor Inclusions in a Basaltic Andesite from the Villarrica Volcano (Chile). Earth and Planetary Science Letters, 282(1-4): 115-121. https://doi.org/10.1016/j.epsl.2009.03.006
      Zhang, D.H., Zhang, W.H., Xu, G.J., 2001. Exsolution and Evolution of Magmatic Hydrothermal Fluids and Their Constraints on the Porphyry Ore-Forming System. Earth Science Frontiers, 8(3): 193-202(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200103033.htm
      Zhou, Y., Liang, X.Q., Cai, Y.F., et al., 2017a. Petrogenesis and Mineralization of Xitian Tin-Tungsten Polymetallic Deposit: Constraints from Mineral Chemistry of Biotite from Xitian A-Type Granite, Eastern Hunan Province. Earth Science, 42(10): 1647-1657(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201710001.htm
      Zhou, Y., Liang, X.Q., Wu, S. C., et al., 2015. Isotopic Geochemistry, Zircon U-Pb Ages and Hf Isotopes of A-Type Granites from the Xitian W-Sn Deposit, SE China: Constraints on Petrogenesis and Tectonic Significance. Journal of Asian Earth Sciences, 105: 122-139. http://dx.doi.org/10.1016/j.jseaes.2015.03.006
      Zhou, Y., Tang, J.X., Huang, Y., et al., 2017b. Microthermometry and Characteristic Element Determination of Fluid Inclusions from Xiongcun Copper-Gold Deposit in Tibet. Mineral Deposits, 36(5): 1039-1056(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201705002.htm
      蔡新华, 贾宝华, 2006. 湖南锡田锡矿的发现及找矿潜力分析. 中国地质, 33(5): 1100-1108. doi: 10.3969/j.issn.1000-3657.2006.05.020
      陈迪, 马爱军, 刘伟, 等, 2013. 湖南锡田花岗岩体锆石U-Pb年代学研究. 现代地质, 27(4): 819-830. doi: 10.3969/j.issn.1000-8527.2013.04.008
      董超阁, 2018. 湖南锡田锡钨矿床和邓阜仙钨矿床成岩成矿年代学及动力学研究(博士学位论文). 北京: 中国科学院大学.
      付建明, 程顺波, 卢友月, 等, 2012. 湖南锡田云英岩-石英脉型钨锡矿的形成时代及其赋矿花岗岩锆石SHRIMP U-Pb定年. 地质与勘探, 48(2): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201202014.htm
      付建明, 伍式崇, 徐德明, 等, 2009. 湘东锡田钨锡多金属矿区成岩成矿时代的再厘定. 华南地质与矿产, 25(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200903001.htm
      郭春丽, 李超, 伍式崇, 等, 2014. 湘东南锡田辉钼矿Re-Os同位素定年及其地质意义. 岩矿测试, 33(1): 142-152. doi: 10.3969/j.issn.0254-5357.2014.01.022
      郭伟, 林贤, 胡圣虹, 等, 2020. 单个流体包裹体LA-ICP-MS分析及应用进展. 地球科学, 45(5): 1362-1374. doi: 10.3799/dqkx.2019.199
      何苗, 刘庆, 孙金凤, 等, 2018. 湘东地区锡田印支期花岗岩的地球化学特征及其构造意义. 岩石学报, 34(7): 2065-2086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201807016.htm
      蓝廷广, 胡瑞忠, 范宏瑞, 等, 2017. 流体包裹体及石英LA-ICP-MS分析方法的建立及其在矿床学中的应用. 岩石学报, 33 (10): 3239-3262. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201710017.htm
      刘飚, 吴堑虹, 李欢, 等, 2019. 湖南锡田钨锡多金属矿田燕山期NE向断层演化历史及其成矿意义. 地球科学. http://kns.cnki.net/kcms/detail/42.1874.P.20191120.1540.010.html doi: 10.3799/dqkx.2019.263
      刘国庆, 伍式崇, 杜安道, 等, 2008. 湘东锡田钨锡矿区成岩成矿时代研究. 大地构造与成矿学, 32(1): 63-71. doi: 10.3969/j.issn.1001-1552.2008.01.009
      刘曼, 邱华宁, 白秀娟, 等, 2015. 湖南锡田钨锡多金属矿床流体包裹体研究. 矿床地质, 34(5): 981-998. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201505008.htm
      龙宝林, 伍式崇, 徐辉煌, 2009. 湖南锡田钨锡多金属矿床地质特征及找矿方向. 地质与勘探, 45(3): 229-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200903001.htm
      马丽艳, 付建明, 伍式崇, 等, 2008. 湘东锡田垄上锡多金属矿床40Ar/39Ar同位素定年研究. 中国地质, 35(4): 706-713. doi: 10.3969/j.issn.1000-3657.2008.04.015
      马铁球, 柏道远, 邝军, 等, 2005. 湘东南茶陵地区锡田岩体锆石SHRIMP定年及其地质意义. 地质通报, 24(5): 415-419. doi: 10.3969/j.issn.1671-2552.2005.05.004
      倪永进, 单业华, 伍式崇, 等, 2014. 湘东邓阜仙-锡田印支期花岗岩体的侵位机制. 大地构造与成矿学, 38(1): 82-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201401008.htm
      牛睿, 刘庆, 侯泉林, 等, 2015. 湖南锡田花岗岩锆石U-Pb年代学及钨锡成矿时代的探讨. 岩石学报, 31(9): 2620-2632. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201509012.htm
      沈昆, 舒磊, 刘鹏瑞, 等, 2018. 山东邹平王家庄铜(钼)矿床蚀变围岩中含云母流体包裹体的成因及其意义. 岩石学报, 34(12): 3509-3524. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812004.htm
      苏红中, 郭春丽, 伍式崇, 等, 2015. 锡田印支-燕山期复式花岗质岩浆-热液活动时限和物质来源. 地质学报, 89(10): 1853-1872. doi: 10.3969/j.issn.0001-5717.2015.10.013
      王莉娟, 王玉往, 王京彬, 等, 2006. 内蒙古大井锡多金属矿床流体成矿作用研究: 单个流体包裹体组分LA-ICP-MS分析证据. 科学通报, 51(10): 1203-1210. doi: 10.3321/j.issn:0023-074X.2006.10.012
      王敏, 白秀娟, 胡荣国, 等, 2015. 湘东南锡田钨锡多金属矿床锡石40Ar/39Ar直接定年. 大地构造与成矿学, 39(6): 1049-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201506008.htm
      王旭东, 倪培, 袁顺达, 等, 2012. 江西黄沙石英脉型钨矿床流体包裹体研究. 岩石学报, 28(1): 122-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201201012.htm
      王艳丽, 2014. 湘东南地区燕山早期花岗岩浆-热液演化及钨矿成矿作用研究(博士学位论文). 北京: 中国地质大学.
      伍式崇, 洪庆辉, 龙伟平, 等, 2009. 湖南锡田钨锡多金属矿床成矿地质特征及成矿模式. 华南地质与矿产, 25(2): 1-6. doi: 10.3969/j.issn.1007-3701.2009.02.001
      夏林圻, 2002. 岩浆岩中的熔体包裹体. 地学前缘, 9(2): 403-414. doi: 10.3321/j.issn:1005-2321.2002.02.020
      熊伊曲, 邵拥军, 刘建平, 等, 2016. 锡田矿田石英脉型钨矿床成矿流体. 中国有色金属学报, 26(5): 1107-1119. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201605020.htm
      徐兴旺, 吴琪, 黄雪飞, 等, 2012. 富铜斑岩岩浆形成机制与演化过程. 岩石学报, 28(2): 421-432. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202008.htm
      杨晓君, 伍式崇, 付建明, 等, 2007. 湘东锡田垄上锡多金属矿床流体包裹体研究. 矿床地质, 26(5): 501-511. doi: 10.3969/j.issn.0258-7106.2007.05.002
      于志峰, 2015. 湖南瑶岗仙和锡田钨矿床成矿流体演化特征与成矿模式研究(硕士学位论文). 北京: 中国地质大学.
      张德会, 张文淮, 许国建, 2001. 岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约. 地学前缘, 8(3): 193-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200103033.htm
      周云, 梁新权, 蔡永丰, 等, 2017a. 湘东锡田燕山期A型花岗岩黑云母矿物化学特征及其成岩成矿意义. 地球科学, 42(10): 1647-1657. doi: 10.3799/dqkx.2017.557
      周云, 唐菊兴, 黄勇, 等, 2017b. 西藏雄村铜金矿床流体包裹体显微测温与特征元素测定. 矿床地质, 36(5): 1039-1056. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201705002.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(4)

      Article views (1396) PDF downloads(80) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return