• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 3
    Mar.  2021
    Turn off MathJax
    Article Contents
    Sun Zhen, Li Fucheng, Lin Jian, Sun Longtao, Pang Xiong, Zheng Jinyun, 2021. The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789. doi: 10.3799/dqkx.2020.371
    Citation: Sun Zhen, Li Fucheng, Lin Jian, Sun Longtao, Pang Xiong, Zheng Jinyun, 2021. The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789. doi: 10.3799/dqkx.2020.371

    The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea

    doi: 10.3799/dqkx.2020.371
    • Received Date: 2020-11-15
    • Publish Date: 2021-03-01
    • Magma plays a key role in the rifting and breakup process of passive continental margin. Up to 10 km thick high velocity lower crust (HVLC) developed in the northeastern margin. Long term controversy toward its formation mechanism makes the margin classification difficult. In order to analyze the rifting and breakup mechanism of the SCS conjugate margins, this paper reviews the recent research progress of global margins, based on which the crustal structure and magmatic activity of the SCS are summarized. It is concluded that large amounts of magmatic activity occurred in the SCS with discrepancy between the eastern and western margins. The HVLC is thicker in the east and thinner or even absent in the west. It is speculated that the HVLC is of syn-rift underplating. According to the crustal structure and the amount of underplated magma, we suggest that the passive continental margin can be divided into 5 subclasses. The eastern continental margin of the SCS is of magma-robust type, and the middle and western margins are of magma-intermediate and magma-deficient types, respectively.In addition to the stretching rate, plate-edge rifting in the east and plate-interior rifting in the west continental margin may also contribute to the large difference in the amount of magmatic underplating.

       

    • loading
    • Bai, Y. L., Wu, S. G., Liu, Z., et al., 2015. Full-Fit Reconstruction of the South China Sea Conjugate Margins. Tectonophysics, 661: 121-135. https://doi.org/10.1016/j.tecto.2015.08.028
      Bayrakci, G., Minshull, T. A., Sawyer, D. S., et al., 2016. Fault-Controlled Hydration of the Upper Mantle during Continental Rifting. Nature Geoscience, 9(5): 384-388. https://doi.org/10.1038/ngeo2671
      Becker, K., Franke, D., Trumbull, R., et al., 2014. Asymmetry of High-Velocity Lower Crust on the South Atlantic Rifted Margins and Implications for the Interplay of Magmatism and Tectonics in Continental Breakup. Solid Earth, 5(2): 1011-1026. https://doi.org/10.5194/se-5-1011-2014
      Bialas, R. W., Buck, W. R., Qin, R., 2010. How much Magma is Required to Rift a Continent?. Earth and Planetary Science Letters, 292(1-2): 68-78. https://doi.org/10.1016/j.epsl.2010.01.021
      Boillot, G., Beslier, M. O., Girardeau, J., 1995. Nature, Structure and Evolution of the Ocean-Continent Boundary: The Lesson of the West Galicia Margin (Spain). In: Banda, E., Torne, M., Talwani, M., eds., Rifted Ocean-Continent Boundaries. Springer, Dordrecht.
      Boillot, G., Grimaud, S., Mauffret, A., et al., 1980. Ocean-Continent Boundary off the Iberian Margin: A Serpentinite Diapir West of the Galicia Bank. Earth and Planetary Science Letters, 48(1): 23-34. https://doi.org/10.1016/0012-821X(80)90166-1
      Bown, J. W., White, R. S., 1995. Effect of Finite Extension Rate on Melt Generation at Rifted Continental Margins. Journal of Geophysical Research: Solid Earth, 100(B9): 18011-18029. https://doi.org/10.1029/94JB01478
      Braun, J., Beaumont, C., 1989. A Physical Explanation of the Relation between Flank Uplifts and the Breakup Unconformity at Rifted Continental Margins. Geology, 17(8): 760-764. https://doi.org/10.1130/0091-7613(1989)0170760: apeotr>2.3.co;2 doi: 10.1130/0091-7613(1989)0170760:apeotr>2.3.co;2
      Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92JB02280
      Bronner, A., Sauter, D., Manatschal, G., et al., 2011. Magmatic Breakup as an Explanation for Magnetic Anomalies at Magma-Poor Rifted Margins. Nature Geoscience, 4(8): 549-553. https://doi.org/10.1038/NGEO1201
      Brune, S., Williams, S. E., Butterworth, N. P., et al., 2016. Abrupt Plate Accelerations Shape Rifted Continental Margins. Nature, 536(7615): 201-204. https://doi.org/10.1038/nature18319
      Buck, W. R., 1991. Modes of Continental Lithospheric Extension. Journal of Geophysical Research: Solid Earth, 96(B12): 20161-20178. https://doi.org/10.1029/91jb01485
      Buck, W. R., 2006. The Role of Magma in the Development of the Afro-Arabian Rift System. In: Yirgu, G., Ebinger, C. J., Maguire, P. K. H., eds., The Afar Volcanic Province within the East African Rift System. Geological Society of London, London.
      Buck, W.R., 2004. Consequences of Asthenospheric Variability on Continental Rifting. In: Karner, G. D., Taylor, B., Driscoll, N. W., et al., eds., Rheology and Deformation of the Lithosphere at Continental Margins. Columbia University Press, New York.
      Calvès, G., Schwab, A. M., Huuse, M., et al., 2011. Seismic Volcanostratigraphy of the Western Indian Rifted Margin: The Pre-Deccan Igneous Province. Journal of Geophysical Research Atmospheres, 116(B1): B01101. https://doi.org/10.1029/2010jb000862
      Cao, J.H., Sun, J.L., Xu, H.L., et al., 2014. Seismological Features of the Littoral Fault Zone in the Pearl River Estuary. Chinese Journal of Geophysics, 57(2): 498-508 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201402015.htm
      Clerc, C., de Ringenbach, J. C., Jolivet, L., et al., 2018. Rifted Margins: Ductile Deformation, Boudinage, Continentward-Dipping Normal Faults and the Role of the Weak Lower Crust. Gondwana Research, 53: 20-40. https://doi.org/10.1016/j.gr.2017.04.030
      Clift, P., Lin, J., Barckhausen, U., 2002. Evidence of Low Flexural Rigidity and Low Viscosity Lower Continental Crust during Continental Break-Up in the South China Sea. Marine and Petroleum Geology, 19(8): 951-970. https://doi.org/10.1016/S0264-8172(02)00108-3
      Davis, M., Kusznir, N, 2004. Depth-Dependent Lithospheric Stretching at Rifted Continental Margins. In: Karner, G. D., ed., Proceedings of NSF Rifted Margins Theoretical Institute. Columbia University Press, New York.
      Davy, R. G., Minshull, T. A., Bayrakci, G., et al., 2016. Continental Hyperextension, Mantle Exhumation, and Thin Oceanic Crust at the Continent-Ocean Transition, West Iberia: New Insights from Wide-Angle Seismic. Journal of Geophysical Research: Solid Earth, 121(5): 3177-3199. https://doi.org/10.1002/2016jb012825
      Deng, H. D., Ren, J. Y., Pang, X., et al., 2020. South China Sea Documents the Transition from Wide Continental Rift to Continental Break up. Nature Communications, 11: 4583. https://doi.org/10.1038/s41467-020-18448-y
      Deng, P., Mei, L. F., Liu, J., et al., 2019. Episodic Normal Faulting and Magmatism during the Syn-Spreading Stage of the BaiyunSag in Pearl River Mouth Basin: Response to the Multi-Phase Seafloor Spreading of the South China Sea. Marine Geophysical Research, 40(1): 33-50. https://doi.org/10.1007/s11001-018-9352-9
      Ding, W. W., Franke, D., Li, J. B., et al., 2013. Seismic Stratigraphy and Tectonic Structure from a Composite Multi-Channel Seismic Profile across the Entire Dangerous Grounds, South China Sea. Tectonophysics, 582: 162-176. https://doi.org/10.1016/j.tecto.2012.09.026
      Ding, W. W., Li, J. B., Clift, P. D., et al., 2016. Spreading Dynamics and Sedimentary Process of the Southwest Sub-Basin, South China Sea: Constraints from Multi-Channel Seismic Data and IODP Expedition 349. Journal of Asian Earth Sciences, 115: 97-113. https://doi.org/10.1016/j.jseaes.2015.09.013
      Ding, W. W., Schnabel, M., Franke, D., et al., 2012. Crustal Structure across the Northwestern Margin of South China Sea: Evidence for Magma-Poor Rifting from a Wide-Angle Seismic Profile. ActaGeologicaSinica (English Edition), 86(4): 854-866. https://doi.org/10.1111/j.1755-6724.2012.00711.x
      Duncan, R. A., Larsen, H. C., Allan, J. F., 1996. Proc. ODP, Init. Repts., vol. 163. Ocean Drilling Program, College Station.
      Eccles, J. D., White, R. S., Christie, P. A. F., 2011. The Composition and Structure of Volcanic Rifted Continental Margins in the North Atlantic: Further Insight from Shear Waves. Tectonophysics, 508(1-4): 22-33. https://doi.org/10.1016/j.tecto.2010.02.001
      Eldholm, O., Thiede, J., Taylor, B., 1987. Proc. ODP, Sci. Results. Ocean Drilling Program, College Station.
      Eldholm, O., Thiede, J., Taylor, E., 1989. Evolution of the VøringVolcanic Margin. Proceedings of the Ocean Drilling Program, 104 Scientific Results. Ocean Drilling Program, College Station.
      Fan, C. Y., Xia, S. H., Cao, J. H., et al., 2019. Lateral Crustal Variation and Post-Rift Magmatism in the Northeastern South China Sea Determined by Wide-Angle Seismic Data. Marine Geology, 410: 70-87. https://doi.org/10.1016/j.margeo.2018.12.007
      Fan, C. Y., Xia, S. H., Zhao, F., et al., 2017. New Insights into the Magmatism in the Northern Margin of the South China Sea: Spatial Features and Volume of IntraplateSeamounts. Geochemistry, Geophysics, Geosystems, 18(6): 2216-2239. https://doi.org/10.1002/2016gc006792
      Fialko, Y. A., Rubin, A. M., 1999. Thermal and Mechanical Aspects of Magma Emplacement in Giant Dike Swarms. Journal of Geophysical Research: Solid Earth, 104(B10): 23033-23049. https://doi.org/10.1029/1999jb900213
      Fountain, D. M., Boundy, T. M., Austrheim, H., et al., 1994. Eclogite-FaciesShear Zones—Deep Crustal Reflectors?. Tectonophysics, 232(1-4): 411-424. https://doi.org/10.1016/0040-1951(94)90100-7
      Franke, D., 2013. Rifting, Lithosphere Breakup and Volcanism: Comparison of Magma-Poor and Volcanic Rifted Margins. Marine and Petroleum Geology, 43: 63-87. https://doi.org/10.1016/j.marpetgeo.2012.11.003
      Franke, D., Savva, D., Pubellier, M., et al., 2014. The Final Rifting Evolution in the South China Sea. Marine and Petroleum Geology, 58: 704-720. https://doi.org/10.1016/j.marpetgeo.2013.11.020
      Fyfe, W. S., 1992. Magma Underplating of Continental Crust. Journal of Volcanology and Geothermal Research, 50(1-2): 33-40. https://doi.org/10.1016/0377-0273(92)90035-C
      Gao, J. W., Bangs, N., Wu, S. G., et al., 2019. Post-Seafloor Spreading Magmatism and Associated Magmatic Hydrothermal Systems in the Xisha Uplift Region, Northwestern South China Sea. Basin Research, 31(4): 688-708. https://doi.org/10.1111/bre.12338
      Geoffroy, L., Burov, E. B., Werner, P., 2015. Volcanic Passive Margins: Another Way to Break up Continents. Scientific Reports, 5: 14828. https://doi.org/10.1038/srep14828
      Gernigon, L., de Ringenbach, J. C., Planke, S., et al., 2004. Deep Structures and Breakup along Volcanic Rifted Margins: Insights from Integrated Studies along the Outer Vøring Basin (Norway). Marine and Petroleum Geology, 21(3): 363-372. https://doi.org/10.1016/j.marpetgeo.2004.01.005
      Gillard, M., Tugend, J., Müntener, O., et al., 2019. The Role of Serpentinization and Magmatism in the Formation of Decoupling Interfaces at Magma-Poor Rifted Margins. Earth-Science Reviews, 196: 102882. https://doi.org/10.1016/j.earscirev.2019.102882
      Hao, T. Y., Xu, Y., Sun, F. L., et al., 2011. Integrated Geophysical Research on the Tectonic Attribute of Conjugate Continental Margin of South China Sea. Chinese Journal of Geophysics, 54(12): 3098-3116 (in Chinese with English abstract). doi: 10.1002/cjg2.1679/full
      Hou, W. A., Li, C. F., Wan, X. L., et al., 2019. Crustal S-Wave Velocity Structure across the Northeastern South China Sea Continental Margin: Implications for Lithology and Mantle Exhumation. Earth andPlanetary Physics, 3(4): 314-329. https://doi.org/10.26464/epp2019033
      Huang, X. L., Niu, Y. L., Xu, Y. G., et al., 2013. Geochronology and Geochemistry of Cenozoic Basalts from Eastern Guangdong, SE China: Constraints on the Lithosphere Evolution Beneath the Northern Margin of the South China Sea. Contributions to Mineralogy and Petrology, 165(3): 437-455. https://doi.org/10.1007/s00410-012-0816-7
      Huang, H. B., Qiu, X. L., Zhang, J. Z., et al., 2019. Low-Velocity Layers in the Northwestern Margin of the South China Sea: Evidence from Receiver Functions of Ocean-Bottom Seismometer Data. Journal of Asian Earth Sciences, 186: 104090. https://doi.org/10.1016/j.jseaes.2019.104090
      Huismans, R. S., Beaumont, C., 2011. Depth-Dependent Extension, Two-Stage Breakup and Cratonic Underplating at Rifted Margins. Nature, 473(7345): 74-78. https://doi.org/10.1038/nature09988
      Huismans, R. S., Beaumont, C., 2014. Rifted Continental Margins: The Case for Depth-Dependent Extension. Earth and Planetary Science Letters, 407: 148-162. https://doi.org/10.1016/j.epsl.2014.09.032
      Jokat, W., Hagen, C., 2017. Crustal Structure of the Agulhas Ridge (South Atlantic Ocean): Formation above a Hotspot?. Tectonophysics, 716: 21-32. https://doi.org/10.1016/j.tecto.2016.08.011
      Larsen, H. C., Saunders, A. D., 1998. Tectonism and Volcanism at the Southeast Greenland Rifted Margin: A Record of Plume Impact and Later Continental Rupture. Ocean Drilling Program, College Station.
      Larsen, H. C., Saunders, A. D., Clift, P. D., 1994. Proc. ODP, Init. Repts, vol. 152. Ocean Drilling Program, College Station.
      Lei, C., Alves, T. M., Ren, J. Y., et al., 2019. Depositional Architecture and Structural Evolution of a Region Immediately Inboard of the Locus of Continental Breakup (Liwan Sub-Basin, South China Sea). GSA Bulletin. 131(7-8): 1059-1074. https: //doi.org/10.1130/b35001.1
      Lei, C., Alves, T. M., Ren, J. Y., et al., 2020. Rift Structure and Sediment Infill of Hyperextended Continental Crust: Insights from 3D Seismic and Well Data (Xisha Trough, South China Sea). Journal of Geophysical Research: Solid Earth, 125(5): e2019JB018610. https://doi.org/10.1029/2019JB018610
      Lester, R., van Avendonk, H. J. A., McIntosh, K., et al., 2014. Rifting and Magmatism in the Northeastern South China Sea from Wide-Angle Tomography and Seismic Reflection Imaging. Journal of Geophysical Research: Solid Earth, 119(3): 2305-2323. https://doi.org/10.1002/2013jb010639
      Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567
      Li, C., van der Hilst, R. D., Engdahl, E. R., et al., 2008. A New Global Model for P Wave Speed Variations in Earth's Mantle. Geochemistry, Geophysics, Geosystems, 9(5): Q05018. https://doi.org/10.1029/2007GC001806
      Li, F. C., Sun, Z., Pang, X., et al., 2019. Low-Viscosity Crustal Layer Controls the Crustal Architecture and Thermal Distribution at Hyperextended Margins: Modeling Insight and Application to the Northern South China Sea Margin. Geochemistry, Geophysics, Geosystems, 20(7): 3248-3267. https://doi.org/10.1029/2019GC008200
      Li, F. C., Sun, Z., Yang, H. F., 2018. Possible Spatial Distribution of the Mesozoic Volcanic Arc in the Present-Day South China Sea Continental Margin and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 123(8): 6215-6235. https://doi.org/10.1029/2017jb014861
      Li, F. C., Sun, Z., Yang, H. F., et al., 2020. Continental Interior and Edge Breakup at Convergent Margins Induced by SubductionDirection Reversal: ANumerical Modeling Study Applied to the South China Sea Margin. Tectonics, 39(11): e2020TC006409. https://doi.org/10.1029/2020TC006409
      Li, J. B., 2011. Dynamics of the Continental Margins of South China Sea: Scientific Experiments and Research Progresses. Chinese Journal of Geophysics, 54(12): 2993-3003 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_chinese-journal-geophysics_thesis/0201253049035.html
      Li, S. Z., Suo, Y. H., Liu, X., et al., 2012. Basic Structural Pattern and Tectonic Models of the South China Sea: Problems, Advances and Controversies. Marine Geology and Quaternary Geology, 32(6): 35-53 (in Chinese with English abstract). http://www.researchgate.net/publication/275900896_Basic_structural_pattern_and_tectonic_models_of_the_South_China_Sea_problems_advances_and_controversies
      Lin, J., Xu, Y. G., Sun, Z., et al., 2019. Mantle Upwelling Beneath the South China Sea and Links to Surrounding Subduction Systems. National Science Review, 6(5): 877-881. https://doi.org/10.1093/nsr/nwz123
      Liu, A., Wu, G. Z., Wu, S. M., 2008. A Discussion on the Origin of High Velocity Layer in the Lower Crust of Northeast South China Sea. Geological Review, 54(5): 609-616 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200805008.htm
      Manatschal, G., Bernoulli, D., 1999. Architecture and Tectonic Evolution of Nonvolcanic Margins: Present-Day Galicia and Ancient Adria. Tectonics, 18(6): 1099-1119. https://doi.org/10.1029/1999TC900041
      Mao, Y. H., Zhao, Z. X., Sun, Z., 2020. Extensional Thinning Mechanism of the Western Continental Margin of the Pearl River Mouth Basin. Earth Science, 45(5): 1622-1635 (in Chinese with English abstract).
      McKenzie, D., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. https://doi.org/10.1016/0012-821X(78)90071-7
      Morgan, P. J., Parmentier, E. M., Lin, J., 1987. Mechanisms for the Origin of Mid-Ocean Ridge Axial Topography: Implications for the Thermal and Mechanical Structure of Accreting Plate Boundaries. Journal of Geophysical Research Atmospheres, 92(B12): 12823. https://doi.org/10.1029/jb092ib12p12823
      Nissen, S. S., Hayes, D. E., Buhl, P., et al., 1995. Deep Penetration Seismic Soundings across the Northern Margin of the South China Sea. Journal of Geophysical Research: Solid Earth, 100(B11): 22407-22433. https://doi.org/10.1029/95jb01866
      Peace, A. L., Welford, J. K., Geng, M. X., et al., 2018. Rift-Related Magmatism on Magma-Poor Margins: Structural and Potential-Field Analyses of the Mesozoic Notre Dame Bay Intrusions, Newfoundland, Canada and Their Link to North Atlantic Opening. Tectonophysics, 745: 24-45. https://doi.org/10.1016/j.tecto.2018.07.025
      Pérez-Gussinyé, M., Morgan, J. P., Reston, T. J., et al., 2006. The Rift to Drift Transition at Non-Volcanic Margins: Insights from Numerical Modelling. Earth and Planetary Science Letters, 244(1-2): 458-473. https://doi.org/10.1016/j.epsl.2006.01.059
      Pérez-Gussinyé, M., Reston, T. J., 2001. Rheological Evolution during Extension at NonvolcanicRifted Margins: Onset of Serpentinization and Development of Detachments Leading to Continental Breakup. Journal of Geophysical Research: Solid Earth, 106(B3): 3961-3975. https://doi.org/10.1029/2000jb900325
      Pichot, T., Delescluse, M., Chamot-Rooke, N., et al., 2014. Deep Crustal Structure of the Conjugate Margins of the SW South China Sea from Wide-Angle Refraction Seismic Data. Marine and Petroleum Geology, 58: 627-643. https://doi.org/10.1016/j.marpetgeo.2013.10.008
      Planke, S., Rasmussen, T., Rey, S. S., et al., 2005. Seismic Characteristics and Distribution of Volcanic Intrusions and Hydrothermal Vent Complexes in the Vøring and Møre Basins. Geological Society, London, PetroleumGeology Conference Series, 6(1): 833-844. https://doi.org/10.1144/0060833
      Planke, S., Symonds, P. A., Alvestad, E., et al., 2000. Seismic Volcanostratigraphy of Large-Volume Basaltic Extrusive Complexes on Rifted Margins. Journal of Geophysical Research: Solid Earth, 105(B8): 19335-19351. https://doi.org/10.1029/1999jb900005
      Qin, R., Buck, W. R., 2008. Why Meter-Wide Dikes at Oceanic Spreading Centers?. Earth and PlanetaryScience Letters, 265(3-4): 466-474. https://doi.org/10.1016/j.epsl.2007.10.044
      Qiu, N., Wang, Z. F., Xie, H., et al., 2013. Geophysical Investigations of Crust-Scale Structural Model of the Qiongdongnan Basin, Northern South China Sea. Marine Geophysical Research, 34(3-4): 259-279. https://doi.org/10.1007/s11001-013-9182-8
      Qiu, X. L., Ye, S. Y., Wu, S. M., et al., 2001. Crustal Structure across the Xisha Trough, Northwestern South China Sea. Tectonophysics, 341(1-4): 179-193. https://doi.org/10.1016/S0040-1951(01)00222-0
      Qiu, X. L., Zhao, M. H., Ao, W., et al., 2011. OBS Survey and Crustal Structure of the Southwest Sub-Basin and Nansha Block, South China Sea. Chinese Journal of Geophysics, 54(12): 3117-3128 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dqwlxb201112012.aspx
      Ren, J. B., Wang, L. L., Yan, Q. S., et al., 2013. Geochemical Characteristics and Its Geological Implications for Basalts in Volcaniclastic Rock from Daimao Seamount. Earth Science, 38(Suppl. 1): 10-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX2013S1002.htm
      Ren, J. Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201501009
      Reston, T. J., 2009. The Structure, Evolution and Symmetry of the Magma-Poor Rifted Margins of the North and Central Atlantic: A Synthesis. Tectonophysics, 468(1-4): 6-27. https://doi.org/10.1016/j.tecto.2008.09.002
      Reynolds, P., Holford, S., Schofield, N., et al., 2017. The Shallow Depth Emplacement of Mafic Intrusions on a Magma-Poor Rifted Margin: An Example from the Bight Basin, Southern Australia. Marine and Petroleum Geology, 88: 605-616. https://doi.org/10.1016/j.marpetgeo.2017.09.008
      Roberts, D. G., Backman, J., Morton, A. C., et al., 1984. Evolution of Volcanic Rifted Margins: Synthesis of Leg 81 Results on the West Margin of Rockall Plateau, Initial Reports of the Deep Sea Drilling Project 81. Ocean Drilling Program, College Station.
      Ros, E., Pérez-Gussinyé, M., Araújo, M., et al., 2017. Lower Crustal Strength Controls on Melting and Serpentinization at Magma-Poor Margins: Potential Implications for the South Atlantic. Geochemistry, Geophysics, Geosystems, 18(12): 4538-4557. https://doi.org/10.1002/2017GC007212
      Royden, L., Keen, C. E., 1980. Rifting Process and Thermal Evolution of the Continental Margin of Eastern Canada Determined from Subsidence Curves. Earth and Planetary Science Letters, 51(2): 343-361. https://doi.org/10.1016/0012-821X(80)90216-2
      Ruan, A. G., Niu, X. W., Qiu, X. L., et al., 2011. A Wide Angle Ocean Bottom Seismometer Profile across Liyue Bank, the Southern Margin of South China Sea. Chinese Journal of Geophysics, 54(12): 3139-3149(in Chinese). http://www.researchgate.net/publication/243971470_A_Wide_Angle_Ocean_Bottom_Seismometer_Experiment_Across_Liyue_Bank_the_Southern_Margin_of_the_South_China_Sea
      Ryberg, T., Geissler, W. H., Jokat, W., et al., 2017. Uppermost Mantle and Crustal Structure at Tristan da Cunha Derived from Ambient Seismic Noise. Earth and Planetary Science Letters, 471: 117-124. https://doi.org/10.1016/j.epsl.2017.04.049
      Savva, D., Pubellier, M., Franke, D., et al., 2014. Different Expressions of Rifting on the South China Sea Margins. Marine and Petroleum Geology, 58: 579-598. https://doi.org/10.1016/j.marpetgeo.2014.05.023
      Schmiedel, T., Kjoberg, S., Planke, S., et al., 2017. Mechanisms of Overburden Deformation Associated with the Emplacement of the Tulipan Sill, Mid-Norwegian Margin. Interpretation, 5(3): SK23-SK38. https://doi.org/10.1190/int-2016-0155.1
      Song, X. X., Li, C. F., Yao, Y. J., et al., 2017. Magmatism in the Evolution of the South China Sea: Geophysical Characterization. Marine Geology, 394: 4-15. https://doi.org/10.1016/j.margeo.2017.07.021
      Sotin, C., Parmentier, E. M., 1989. Dynamical Consequences of Compositional and Thermal Density Stratification Beneath Spreading Centers. Geophysical Research Letters, 16(8): 835-838. https://doi.org/10.1029/gl016i008p00835
      Sun, Z., Jian, Z., Stock, J. M., et al., 2018. South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368. International Ocean Discovery Program, College Station.
      Sun, Z., Lin, J., Qiu, N., et al., 2019a. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
      Sun, Z., Ding, W. W., Zhao, X. X., et al., 2019b. The Latest Spreading Periods of the South China Sea: New Constraints from Macrostructure Analysis of IODP Expedition 349 Cores and Geophysical Data. Journal of Geophysical Research: Solid Earth, 124(10): 9980-9998. https://doi.org/10.1029/2019jb017584
      Sun, Z., Lin, J., Wang, P. X., et al., 2020. International Collaboration of Ocean Exploration in the South China Sea Enhanced by International Ocean Discovery Program Expeditions 367/368/368x. Journal of Tropical Oceanography, 39(6): 18-29 (in Chinese with English abstract).
      Sun, Z., Liu, S. Q., Pang, X., et al., 2016. Recent Research Progress on the Rifting-Breakup Process in Passive Continental Margins. Journal of Tropical Oceanography, 35(1): 1-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDHY201601001.htm
      Sun, Z., Zhao, Z. X., Li, J. B., et al., 2011. Tectonic Analysis of the Breakup and Bollision Unconformities in the Nansha Block. Chinese Journal of Geophysics, 54(12): 3196-3209 (in Chinese). doi: 10.1002/cjg2.1685/full
      Sun, Z., Zhong, Z. H., Keep, M., et al., 2009. 3D Analogue Modeling of the South China Sea: A Discussion on Breakup Pattern. Journal of Asian Earth Sciences, 34(4): 544-556. https://doi.org/10.1016/j.jseaes.2008.09.002
      Sun, Z., Zhong, Z. H., Zhou, D., et al., 2006. Research on the Dynamics of the South China Sea Opening: Evidence from Analogue Modeling. Science in China (Series D), 36(9): 797-810 (in Chinese).
      Tugend, J., Gillard, M., Manatschal, G., et al., 2018. Reappraisal of the Magma-Rich VersusMagma-Poor Rifted Margin Archetypes. Geological Society, London, Special Publications, SP476.9.https://doi.org/10.1144/sp476.9
      vanKeken, P. E., Hacker, B. R., Syracuse, E. M., et al., 2011. SubductionFactory: 4. Depth-Dependent Flux of H2O from SubductingSlabs Worldwide. Journalof Geophysical Research Atmospheres, 116(B1): B01401. https://doi.org/10.1029/2010jb007922
      Wan, K. Y., Xia, S. H., Cao, J. H., et al., 2017. Deep Seismic Structure of the Northeastern South China Sea: Origin of a High-Velocity Layer in the Lower Crust. Journal of Geophysical Research: Solid Earth, 122(4): 2831-2858. https://doi.org/10.1002/2016jb013481
      Wan, L., Zeng, W. J., Wu, N. Y., et al., 2009. Geotransect from Xisha Trough in the Northern Continental Slope of the South China Sea to Hengchun Peninsular in Taiwan. Geology in China, 36(3): 564-572 (in Chinese with English abstract). http://www.researchgate.net/publication/287691622_Geotransect_from_Xisha_Trough_in_the_northern_continental_slope_of_the_South_China_Sea_to_Hengchun_Peninsular_in_Taiwan
      Wang, L. J., Sun, Z., Yang, J. H., et al., 2019a. Seismic Characteristics and Evolution of Post-Rift Igneous Complexes and Hydrothermal Vents in the LingshuiSag (QiongdongnanBasin), Northwestern South China Sea. Marine Geology, 418: 106043. https://doi.org/10.1016/j.margeo.2019.106043
      Wang, L. J., Zhu, J. T., Zhuo, H. T., et al., 2020. Seismic Characteristics and Mechanism of Fluid Flow Structures in the Central Depression of Qiongdongnan Basin, Northern Margin of South China Sea. International Geology Review, 62(7-8): 1108-1130. https://doi.org/10.1080/00206814.2019.1695002
      Wang, P. X., Huang, C. Y., Lin, J., et al., 2019b. The South China Sea is not a Mini-Atlantic: Plate-Edge Rifting VsIntra-Plate Rifting. National Science Review, 6(5): 902-913. https://doi.org/10.1093/nsr/nwz135
      Wang, P. X., Jian, Z. M., 2019. Exploring the Deep South China Sea: Retrospects and Prospects. Science in China (Series D), 49(10): 1590-1606 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JDXG201910001
      Wang, T. K., Chen, M. K., Lee, C. S., et al., 2006. Seismic Imaging of the Transitional Crust across the Northeastern Margin of the South China Sea. Tectonophysics, 412(3-4): 237-254. https://doi.org/10.1016/j.tecto.2005.10.039
      Wang, X. C., Li, Z. X., Li, X. H., et al., 2012. Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: A Consequence of a Young Thermal Mantle Plume Close to Subduction Zones?. Journal of Petrology, 53(1): 177-233. https://doi.org/10.1093/petrology/egr061
      Wei, X. D., Ruan, A. G., Zhao, M. H., et al., 2011. A Wide Angle OBS Profile across Dongsha Uplift and Chaoshan Depression in the Mid Northern South China Sea. Chinese Journal of Geophysics, 54(12): 3325-3335 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqwlxb201112030
      White, R., McKenzie, D., 1989. Magmatism at Rift Zones: The Generation of Volcanic Continental Margins and Flood Basalts. Journal of Geophysical Research Atmospheres, 94(B6): 7685-7729. https://doi.org/10.1029/jb094ib06p07685
      Whitmarsh, R. B., Manatschal, G., Minshull, T. A., 2001. Evolution of Magma-Poor Continental Margins from Rifting to Seafloor Spreading. Nature, 413(6852): 150-154. https://doi.org/10.1038/35093085
      Wu, S. M., Zhou, D., Qiu, X. L., 2001. Tectonic Setting of the Northern Margin of South China Sea. Geological Journal of China Universities, 7(4): 419-426 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200104005.htm
      Xia, S. H., Zhao, F., Zhao, D. P., et al., 2018. Crustal Plumbing System of Post-Rift Magmatism in the Northern Margin of South China Sea: New Insights from Integrated Seismology. Tectonophysics, 744: 227-238. https://doi.org/10.1016/j.tecto.2018.07.002
      Xie, Z. Y., Sun, L. T., Pang, X., et al., 2017. Origin of the Dongsha Event in the South China Sea. Marine Geophysical Research, 38(4): 357-371. https://doi.org/10.1007/s11001-017-9321-8
      Xu, Y. G., Wei, J. X., Qiu, H. N., et al., 2012. Opening and Evolution of the South China Sea Constrained by Studies on Volcanic Rocks: Preliminary Results and a Research Design. Chinese Science Bulletin, 57(24): 3150-3164. https://doi.org/10.1007/s11434-011-4921-1
      Yan, P., Liu, H. L., 2002. Analysis on Deep Crust Sounding Results in Northern Margin of South China Sea. Journal of Tropical Oceanography, 21(2): 1-12 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026539877
      Yan, P., Zhou, D., Liu, Z. S., 2001. A Crustal Structure Profile across the Northern Continental Margin of the South China Sea. Tectonophysics, 338(1): 1-21. https://doi.org/10.1016/S0040-1951(01)00062-2
      Yan, Q. S., Shi, X. F., Castillo, P. R., 2014. The Late Mesozoic-Cenozoic Tectonic Evolution of the South China Sea: A Petrologic Perspective. Journal of Asian Earth Sciences, 85: 178-201. https://doi.org/10.1016/j.jseaes.2014.02.005
      Yang, T., Shen, Y., 2005. P-Wave Velocity Structure of the Crust and Uppermost Mantle Beneath Iceland from Local Earthquake Tomography. Earth and Planetary Science Letters, 235(3-4): 597-609. https://doi.org/10.1016/j.epsl.2005.05.015
      Yao, B. C., 1998. Crust Structure of the Northern Margin of the South China Sea and Its Tectonic Significance. Marine Geology and Quaternary Geology, 18(2): 1-16 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ802.000.htm
      Yao, B., Wang, G. Y., 1983. The Crustal Structure of the South China Sea. Science in China (Series B), 13(2): 177-186 (in Chinese).
      Yao, B., Zeng, W., J., Chen, Y. Z., et al., 1994a. The Crustal Structure in the Eastern Part of the Northern Margin of the South China Sea. Acta Geophysica Sinica, 37(1): 27-35 (in Chinese with English abstract).
      Yao, B., Zeng, W., J., Chen, Y. Z., et al., 1994b. The Crustal Structure in the Western Part of the Northern Margin of the South China Sea. Acta Oceanologica Sinica, 16(3): 86-93 (in Chinese with English abstract).
      Yu, M. M., Yan, Y., Huang, C. Y., et al., 2018. Opening of the South China Sea and Upwelling of the Hainan Plume. Geophysical Research Letters, 45(6): 2600-2609. https://doi.org/10.1002/2017GL076872
      Yu, X., Liu, Z. F., 2020. Non-Mantle-Plume Process Caused the Initial Spreading of the South China Sea. Scientific Reports, 10(1): 1-10. https://doi.org/10.1038/s41598-020-65174-y
      Zhang, C. M., Sun, Z., Manatschal, G., et al., 2020a. Syn-Rift Magmatic Characteristics and Evolution at a Sediment-Rich Margin: Insights from High-Resolution Seismic Data from the South China Sea. Gondwana Research, 91: 81-96. https://doi.org/10.1016/j.gr.2020.11.012
      Zhang, C., Su, M., Pang, X., et al., 2019. Tectono-Sedimentary Analysis of the Hyperextended Liwan Sag Basin (Midnorthern Margin of the South China Sea). Tectonics, 38(2): 470-491. https://doi.org/10.1029/2018TC005063
      Zhang, G. L., Luo, Q., Zhao, J., et al., 2018. Geochemical Nature of Sub-Ridge Mantle and Opening Dynamics of the South China Sea. Earth and Planetary Science Letters, 489: 145-155. https://doi.org/10.1016/j.epsl.2018.02.040
      Zhang, Q., Wu, S. G., Dong, D. D., 2016. Cenozoic Magmatism in the Northern Continental Margin of the South China Sea: Evidence from Seismic Profiles. Marine Geophysical Research, 37(2): 71-94. https://doi.org/10.1007/s11001-016-9266-3
      Zhang, Y. F., Sun, Z., Pang, X., 2014. The Relationship between Extension of Lower Crust and Displacement of the Shelf Break. Science in China (Series D), 44(3): 488-496 (in Chinese).
      Zhang, Y. F., Sun, Z., Zhang, J. Y., et al., 2020b. The Structure, Depositional Style and Accumulation Characteristics of Continental Margin with Diachronous Breakup in the Northern South China Sea. International Geology Review, 62(7-8): 1006-1018. https://doi.org/10.1080/00206814.2019.1631219
      Zhang, Y. F., Sun, Z., Zhou, D., et al., 2007. The Thinning Feature in Cenozoic and Its Dynamic Significance of the Northern Continental Margin of the South China Sea. Science in China (Series D), 37(12): 1609-1616 (in Chinese).
      Zhang, Y. Z., Qi, J. F., Wu, J. F., 2019. Cenozoic Faults Systems and Its Geodynamics of the Continental Margin Basins in the Northern of South China Sea. Earth Science, 44(2): 603-625 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX201902023.htm
      Zhao, M. H., Qiu, X. L., Xia, S. H., et al., 2010. Seismic Structure in the Northeastern South China Sea: S-Wave Velocity and Vp/Vs Ratios Derived from Three-Component OBS Data. Tectonophysics, 480(1-4): 183-197. https://doi.org/10.1016/j.tecto.2009.10.004
      Zhu, W. L., Zhong, K., Li, Y. C., et al., 2012. Characteristics of Hydrocarbon Accumulation and Exploration Potential of the Northern South China Sea Deepwater Basins. Chinese Science Bulletin, 57(20): 1833-1841 (in Chinese). doi: 10.1360/csb2012-57-20-1833
      曹敬贺, 孙金龙, 徐辉龙, 等, 2014. 珠江口海域滨海断裂带的地震学特征. 地球物理学报, 57(2): 498-508. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201402015.htm
      郝天珧, 徐亚, 孙福利, 等, 2011. 南海共轭大陆边缘构造属性的综合地球物理研究. 地球物理学报, 54(12): 3098-3116. doi: 10.3969/j.issn.0001-5733.2011.12.011
      李家彪, 2011. 南海大陆边缘动力学: 科学实验与研究进展. 地球物理学报, 54(12): 2993-3003. doi: 10.3969/j.issn.0001-5733.2011.12.002
      李三忠, 索艳慧, 刘鑫, 等, 2012. 南海的基本构造特征与成因模型: 问题与进展及论争. 海洋地质与第四纪地质, 32(6): 35-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201206009.htm
      刘安, 武国忠, 吴世敏, 2008. 南海东北部下地壳高速层的成因探讨. 地质论评, 54(5): 609-616. doi: 10.3321/j.issn:0371-5736.2008.05.005
      毛云华, 赵中贤, 孙珍, 2020. 珠江口盆地西部陆缘伸展-减薄机制. 地球科学, 45(5): 1622-1635. doi: 10.3799/dqkx.2019.160
      丘学林, 赵明辉, 敖威, 等, 2011. 南海西南次海盆与南沙地块的OBS探测和地壳结构. 地球物理学报, 54(12): 3117-3128. doi: 10.3969/j.issn.0001-5733.2011.12.012
      任江波, 王嘹亮, 鄢全树, 等, 2013. 南海玳瑁海山玄武质火山角砾岩的地球化学特征及其意义. 地球科学, 38(增刊1): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2013S1002.htm
      任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501011.htm
      阮爱国, 牛雄伟, 丘学林, 等, 2011. 穿越南沙礼乐滩的海底地震仪广角地震试验. 地球物理学报, 54(12): 3139-3149. doi: 10.3969/j.issn.0001-5733.2011.12.014
      孙珍, 林间, 汪品先, 等, 2020. 国际大洋发现计划IODP367/368/368X航次推动南海国际化海洋科考成果. 热带海洋学报, 39(6): 18-29. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY202006002.htm
      孙珍, 刘思青, 庞雄, 等, 2016. 被动大陆边缘伸展-破裂过程研究进展. 热带海洋学报, 35(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201601001.htm
      孙珍, 赵中贤, 李家彪, 等, 2011. 南沙地块内破裂不整合与碰撞不整合的构造分析. 地球物理学报, 54(12): 3196-3209. doi: 10.3969/j.issn.0001-5733.2011.12.019
      孙珍, 钟志洪, 周蒂, 等, 2006. 南海的发育机制研究——相似模拟证据. 中国科学(D辑), 36(9): 797-810. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200609001.htm
      万玲, 曾维军, 吴能友, 等, 2009. 南海北部陆缘西沙海槽-台湾恒春半岛地学断面. 中国地质, 36(3): 564-572. doi: 10.3969/j.issn.1000-3657.2009.03.006
      汪品先, 翦知湣, 2019. 探索南海深部的回顾与展望. 中国科学(D辑), 49(10): 1590-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910006.htm
      卫小冬, 阮爱国, 赵明辉, 等, 2011. 穿越东沙隆起和潮汕坳陷的OBS广角地震剖面. 地球物理学报, 54(12): 3325-3335. doi: 10.3969/j.issn.0001-5733.2011.12.030
      吴世敏, 周蒂, 丘学林, 2001. 南海北部陆缘的构造属性问题. 高校地质学报, 7(4): 419-426. doi: 10.3969/j.issn.1006-7493.2001.04.006
      阎贫, 刘海龄, 2002. 南海北部陆缘地壳结构探测结果分析. 热带海洋学报, 21(2): 1-12. doi: 10.3969/j.issn.1009-5470.2002.02.001
      姚伯初, 1998. 南海北部陆缘的地壳结构及构造意义. 海洋地质与第四纪地质, 18(2): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ802.000.htm
      姚伯初, 王光宇, 1983. 南海海盆的地壳结构. 中国科学(B辑), 13(2): 177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198302009.htm
      姚伯初, 曾维军, 陈艺中, 等, 1994a. 南海北部陆缘东部的地壳结构. 地球物理学报, 37(1): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX401.003.htm
      姚伯初, 曾维军, 陈艺中, 等, 1994b. 南海北部陆缘西部的地壳结构. 海洋学报, 16(3): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC403.009.htm
      张云帆, 孙珍, 庞雄, 2014. 珠江口盆地白云凹陷下地壳伸展与陆架坡折的关系. 中国科学(D辑), 44(3): 488-496. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201403009.htm
      张云帆, 孙珍, 周蒂, 等, 2007. 南海北部陆缘新生代地壳减薄特征及其动力学意义. 中国科学(D辑), 37(12): 1609-1616. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200712007.htm
      张远泽, 漆家福, 吴景富, 2019. 南海北部新生代盆地断裂系统及构造动力学影响因素. 地球科学, 44(2): 603-625. doi: 10.3799/dqkx.2018.542
      朱伟林, 钟锴, 李友川, 等, 2012. 南海北部深水区油气成藏与勘探. 科学通报, 57(20): 1833-1841. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220004.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (2577) PDF downloads(327) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return