• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 8
    Aug.  2021
    Turn off MathJax
    Article Contents
    Ren Xiaobo, Wu Qiang, Wu Ruifang, Liu Shouqiang, 2021. Simulation of Groundwater Flow Field of Coal Mine Based on Subdomain-Analytic Element Method. Earth Science, 46(8): 3019-3027. doi: 10.3799/dqkx.2020.389
    Citation: Ren Xiaobo, Wu Qiang, Wu Ruifang, Liu Shouqiang, 2021. Simulation of Groundwater Flow Field of Coal Mine Based on Subdomain-Analytic Element Method. Earth Science, 46(8): 3019-3027. doi: 10.3799/dqkx.2020.389

    Simulation of Groundwater Flow Field of Coal Mine Based on Subdomain-Analytic Element Method

    doi: 10.3799/dqkx.2020.389
    • Received Date: 2020-11-05
      Available Online: 2021-09-14
    • Publish Date: 2021-08-15
    • In order to analyze the feasibility of applying the subdomain-analytic element method to the simulation of coal mine groundwater flow field, and to explore how to improve the simulation accuracy of this method, complex potential expression of nonlinear density distribution high-order line-sink of analytic element method was derived independently here, and spatial distribution characteristics of values of discharge potential and stream function on line-sink were analyzed. On the basis of that, the flow field model of coal mine was constructed with python language based on subdomains-analytic element method which was used for solving a problem concerning the distribution of head in a coal mine after drainage test. According to the simulation results, the absolute value of the deviation between the simulated heads and the heads of the observation holes ranges from 1.36 m to 5.27 m, and the heads on the outer boundaries of the model (actual constant head boundaries) are close to the actual value (900 m), and the flow rates passing through the outer boundaries of the model (actual impermeable boundaries) approximate zero. The analysis of the simulation principle and simulation results show that the coal mine groundwater flow field model based on the subdomain-analytic element method satisfies the conservation of mass and the gradient field of Darcy flow in the whole area, and the head at any point in the whole area can be determined using the discharge potential function of the subdomain where the point is located in. Therefore, it is feasible to apply the subdomain-analytic element method to simulate the groundwater flow field of coal mine; and the nonlinear density distribution line-sinks representing the model boundaries can be divided into shorter lengths to further improve the accuracy of the simulation.

       

    • loading
    • Bakker, M., 2014. Python Scripting: The Return to Programming. Groundwater, 52(6): 821-822. https://doi.org/10.1111/gwat.12269
      Bakker, M., 2019. Data-Sharing Requires Script-Sharing. Groundwater, 57(2): 187. https://doi.org/10.1111/gwat.12852
      Bakker, M., Kelson, V. A., 2009. Writing Analytic Element Programs in Python. Groundwater, 47(6): 828-834. https://doi.org/10.1111/j.1745-6584.2009.00583.x
      Chen, C.X., Tang, Z.H., Hu, L.T., 2014. Theoretical Method and Model Design of Groundwater Flow Numerical Simulation. Geological Publishing House, Beijing (in Chinese).
      Fienen, M. N., Bakker, M., 2016. HESS Opinions: Repeatable Research: What Hydrologists can Learn from the Duke Cancer Research Scandal. Hydrology and Earth System Sciences, 20(9): 3739-3743. https://doi.org/10.5194/hess-20-3739-2016
      Fitts, C. R., 1997. Analytic Modeling of Impermeable and Resistant Barriers. Groundwater, 35(2): 312-317. https://doi.org/10.1111/j.1745-6584.1997.tb00088.x
      Fitts, C. R., 2010. Modeling Aquifer Systems with Analytic Elements and Subdomains. Water Resources Research, 46(7): W07521. https://doi.org/10.1029/2009wr008331
      Fitts, C. R., 2012. Groundwater Science (2nd Edition). Elsevier/Academic Press, San Diego.
      Fitts, C. R., 2018. Modeling Dewatered Domains in Multilayer Analytic Element Models. Groundwater, 56(4): 557-561. https://doi.org/10.1111/gwat.12645
      Fitts, C. R., Godwin, J., Feiner, K., et al., 2015. Analytic Element Modeling of Steady Interface Flow in Multilayer Aquifers Using AnAqSim. Groundwater, 53(3): 432-439. https://doi.org/10.1111/gwat.12225
      Haitjema, H.M., 1995. Analytic Element Modeling of Groundwater Flow. Academic Press, San Diego.
      Haitjema, H. M., 2015. The Cost of Modeling. Groundwater, 53(2): 179. https://doi.org/10.1111/gwat.12321
      Haitjema, H. M., Hunt, R. J., Jankovic, I., et al., 2006. Foreword: Ground Water Flow Modeling with the Analytic Element Method. Groundwater, 44(1): 1-2. https://doi.org/10.1111/j.1745-6584.2005.00144.x
      Jiang, L.Q., Sun, R.L., Liang, X., 2020. Predicting Groundwater Flow and Transport in the Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods. Earth Science (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2020.268
      Li, J.Z., Zhou, A.G., Zhou, J.W., et al., 2020. Risk Assessment of Aquifer Destruction in Underground Mining Coal of North China: A Case Study of Hongshan Mine in Zibo City. Earth Science, 45(3): 1027-1040 (in Chinese with English abstract). doi: 10.1007/s11356-020-10056-z
      Liu, S.Q., 2012. Research on the Evaluation Method of Coal Seam Floor Water Bursting and Its Application (Dissertation). China University of Mining & Technology, Beijing (in Chinese with English abstract).
      National Coal Mine Safety Supervision Bureau, 2018. Coal Mine Water Prevention and Control Regulations. Coal Industry Press, Beijing (in Chinese).
      Ranjram, M., Craig, J. R., 2018. Closed Analytic Elements with Flexible Geometry. Groundwater, 56(5): 816-822. https://doi.org/10.1111/gwat.12649
      Steward, D. R., 2015. Analysis of Discontinuities across Thin Inhomogeneities, Groundwater/Surface Water Interactions in River Networks, and Circulation about Slender Bodies Using Slit Elements in the Analytic Element Method. Water Resources Research, 51(11): 8684-8703. https://doi.org/10.1002/2015wr017526.
      Strack, O.D.L., 1989. Groundwater Mechanics. Prentice Hall, Englewood Cliffs.
      Strack, O. D. L., 2003. Theory and Applications of the Analytic Element Method. Reviews of Geophysics, 41(2): 1005. https://doi.org/10.1029/2002rg000111
      Strack, O. D. L., 2017a. Vertically Integrated Flow in Stratified Aquifers. Journal of Hydrology, 548: 794-800. https://doi.org/10.1016/j.jhydrol.2017.01.039
      Strack, O.D.L., 2017b. Analytical Groundwater Mechanics. Cambridge University Press, Cambridge.
      Strack, O. D. L., 2018. Limitless Analytic Elements. Water Resources Research, 54(2): 1174-1190. https://doi.org/10.1002/2017wr022117
      Toller, E. A. L., Strack, O. D. L., 2019. Interface Flow with Vertically Varying Hydraulic Conductivity. Water Resources Research, 55(11): 8514-8525. https://doi.org/10.1029/2019wr024927
      Wang, X.S., Wan, L., 2011. Groundwater Movement Equations. Geological Publishing House, Beijing (in Chinese).
      Wu, Q., 2014. Progress, Problems and Prospects of Prevention and Control Technology of Mine Water and Reutilization in China. Journal of China Coal Society, 39(5): 795-805 (in Chinese with English abstract). http://www.cqvip.com/QK/96550X/201405/49847171.html
      Wu, Q., Cui, F.P., Zhao, S.Q., et al., 2013a. Type Classification and Main Characteristics of Mine Water Disasters. Journal of China Coal Society, 38(4): 561-565 (in Chinese with English abstract).
      Wu, Q., Zhao, S.Q., Sun, W.J., et al., 2013b. Classification of the Hydrogeological Type of Coal Mine and Analysis of Its Characteristics in China. Journal of China Coal Society, 38(6): 901-905 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000006/art00001
      Zhang, Z. Y., Wang, W. K., Yeh, T. C. J., et al., 2016. Finite Analytic Method Based on Mixed-Form Richards' Equation for Simulating Water Flow in Vadose Zone. Journal of Hydrology, 537: 146-156. https://doi.org/10.1016/j.jhydrol.2016.03.035
      陈崇希, 唐仲华, 胡立堂, 2014. 地下水流数值模拟理论方法及模型设计. 北京: 地质出版社.
      国家煤矿安全监察局, 2018. 煤矿防治水细则. 北京: 煤炭工业出版社.
      蒋立群, 孙蓉琳, 梁杏, 2020. 含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响. 地球科学. https://doi.org/10.3799/dqkx.2020.268
      李建中, 周爱国, 周建伟, 等, 2020. 华北煤田矿山开采导致含水层破坏风险评估: 以淄博洪山煤矿为例. 地球科学, 45(3): 1027-1040. doi: 10.3799/dqkx.2019.088
      刘守强, 2012. 煤层底板突水评价方法与应用研究(博士学位论文). 北京: 中国矿业大学.
      王旭升, 万力, 2011. 地下水运动方程. 北京: 地质出版社.
      武强, 2014. 我国矿井水防控与资源化利用的研究进展、问题和展望. 煤炭学报, 39(5): 795-805. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201405001.htm
      武强, 崔芳鹏, 赵苏启, 等, 2013a. 矿井水害类型划分及主要特征分析. 煤炭学报, 38(4): 561-565. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201304006.htm
      武强, 赵苏启, 孙文洁, 等, 2013b. 中国煤矿水文地质类型划分与特征分析. 煤炭学报, 38(6): 901-905. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201306003.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (983) PDF downloads(25) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return