• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 6
    Jun.  2021
    Turn off MathJax
    Article Contents
    Yang Yang, Sun Guochao, Zhao Zifu, 2021. Petrogenesis of Jingshan Granites from Southeast Margin of North China Block and Its Tectonic Implications. Earth Science, 46(6): 1993-2015. doi: 10.3799/dqkx.2020.394
    Citation: Yang Yang, Sun Guochao, Zhao Zifu, 2021. Petrogenesis of Jingshan Granites from Southeast Margin of North China Block and Its Tectonic Implications. Earth Science, 46(6): 1993-2015. doi: 10.3799/dqkx.2020.394

    Petrogenesis of Jingshan Granites from Southeast Margin of North China Block and Its Tectonic Implications

    doi: 10.3799/dqkx.2020.394
    • Received Date: 2021-01-27
    • Publish Date: 2021-06-15
    • In this paper it presents a combined study of zircon U-Pb ages, trace elements and Hf isotopes, and whole-rock major-trace elements and Sr-Nd isotopes for the Jingshan granites from the southeast margin of the North China block (NCB). LA-ICP-MS zircon U-Pb dating yielded Late Jurassic ages of 160.9±0.8 to 161.6±1.5 Ma. Relict zircons have U-Pb ages of mainly Triassic and Neoproterozoic, in agreement with metamorphic and protolith ages for the ultrahigh-pressure (UHP) meta-igneous rocks in the Dabie-Sulu orogenic belt, respectively. These granites are calc-alkaline to high-K calc-alkaline, and exhibit arc-type trace element features and enriched Sr-Nd-Hf isotope compositions, i.e. high whole-rock (87Sr/86Sr)i ratios of 0.708 0 to 0.709 1, low εNd(t) values of -15.6 to -13.5 and zircon εHf(t) values of -23.1 to -9.5, with two-stage Nd-Hf model ages mainly of Paleoproterozoic. These zircon U-Pb geochronological and geochemical characteristics are consistent with those of the UHP meta-igneous rocks in the Dabie-Sulu orogenic belt, indicating a genetic link between them. In particular, the Neoproterozoic and Triassic U-Pb ages of relict zircons are characteristic features of the subducted continental crust of the South China block (SCB). Therefore, the Jingshan granites are the product of partial melting of the subducted SCB continental crust, which would be incorporated into the crust of the NCB during the Triassic continental collision. These granites have low Rb contents, high Sr, Ba contents, and thus low Rb/Sr ratios, and low zirconium saturation and Ti-in-zircon temperatures (~700℃), suggesting their derivation from low-temperature partial melting of the subducted SCB continental crust with water addition, which might be related to the subduction of the paleo-Pacific plate beneath eastern China in the Jurassic.

       

    • loading
    • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x doi: 10.1016/S0009-2541(02)00195-X
      Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi.org/10.1016/s0024-4937(98)00085-1 doi: 10.1016/S0024-4937(98)00085-1
      Boehnke, P., Watson, E.B., Trail, D., et al., 2013. Zircon Saturation Re-Revisited. Chemical Geology, 351: 324-334. https://doi.org/10.1016/j.chemgeo.2013.05.028
      Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1-2): 48-57. https://doi.org/10.1016/j.epsl.2008.06.010
      Chappell, B.W., White, A.J.R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173-174. http://ci.nii.ac.jp/naid/80013136601/
      Chen, R.X., Zheng, Y.F., Xie, L.W., 2010. Metamorphic Growth and Recrystallization of Zircon: Distinction by Simultaneous In-Situ Analyses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen. Lithos, 114(1-2): 132-154. https://doi.org/10.1016/j.lithos.2009.08.006
      Chung, S.L., Chu, M.F., Zhang, Y.Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3-4): 173-196. https://doi.org/10.1016/j.earscirev.2004.05.001 http://www.sciencedirect.com/science/article/pii/S001282520400042X
      Collins, W.J., Brendan, M.J., Johnson, T.E., et al., 2020. Critical Role of Water in the Formation of Continental Crust. Nature Geoscience, 13(5): 331-338. https://doi.org/10.1038/s41561-020-0573-6
      Dai, L.Q., Zhao, Z.F., 2019. Mafic Igneous Rocks in Continental Collision Orogen Record Recycling of Subducted Paleo-Oceanic Crust. Earth Science, 44(12): 4128-4134(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0024493719300301
      DePaolo, D.J., 1988. Neodymium Isotope Geochemistry: An Introduction. Springer-Verlag Press, New York, 181.
      Ducea, M.N., Saleeby, J.B., Bergantz, G., 2015. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs. Annual Review of Earth and Planetary Sciences, 43(1): 299-331. https://doi.org/10.1146/annurev-earth-060614-105049
      Elhlou, S., Belousova, E., Griffin, W.L., et al., 2006. Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation. Geochimica et Cosmochimica Acta, 70(18): A158. https://doi.org/10.1016/j.gca.2006.06.1383 http://adsabs.harvard.edu/abs/2006GeCAS..70R.158E
      Faure, M., Lin, W., Schärer, U., et al., 2003. Continental Subduction and Exhumation of UHP Rocks. Structural and Geochronological Insights from the Dabieshan (East China). Lithos, 70(3-4): 213-241. https://doi.org/10.1016/s0024-4937(03)00100-2 doi: 10.1016/S0024-4937(03)00100-2
      Ferry, J.M., Watson, E.B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      Gao, P., Zheng, Y.F., Zhao, Z.F., 2016. Experimental Melts from Crustal Rocks: A Lithochemical Constraint on Granite Petrogenesis. Lithos, 266-267: 133-157. https://doi.org/10.1016/j.lithos.2016.10.005
      Geng, Y.S., Du, L.L., Ren, L.D., 2012. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraints from Zircon Hf Isotopes. Gondwana Research, 21(2-3): 517-529. https://doi.org/10.1016/j.gr.2011.07.006
      Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 doi: 10.1016/S0016-7037(99)00343-9
      Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 doi: 10.1016/S0024-4937(02)00082-8
      Guo, S.S., Li, S.G., 2007. Petrological and Geochemical Constraints on the Origin of Leucogranites. Earth Science Frontiers, 14(6): 290-298 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200706035.htm
      Guo, S.S., Li, S.G., 2009. Petrochemical Characteristics of Leucogranite and a Case Study of Bengbu Leucogranites. Chinese Science Bulletin, 54(11): 1923-1930. https://doi.org/10.1007/s11434-009-0355-4 http://www.cqvip.com/Main/Detail.aspx?id=30566764
      Hawkesworth, C.J., Kemp, A.I.S., 2006. Evolution of the Continental Crust. Nature, 443: 811-817. https://doi.org/10.1038/nature05191
      He, Y.S., Li, S.G., Hoefs, J., et al., 2011. Post-Collisional Granitoids from the Dabie Orogen: New Evidence for Partial Melting of a Thickened Continental Crust. Geochimica et Cosmochimica Acta, 75(13): 3815-3838. https://doi.org/10.1016/j.gca.2011.04.011
      Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/c2ja30078h
      Jagoutz, O., Kelemen, P.B., 2015. Role of Arc Processes in the Formation of Continental Crust. Annual Review of Earth and Planetary Sciences, 43(1): 363-404. https://doi.org/10.1146/annurev-earth-040809-152345
      Jahn, B.M., Condie, K.C., 1995. Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites. Geochimica et Cosmochimica Acta, 59(11): 2239-2258. https://doi.org/10.1016/0016-7037(95)00103-7
      Jahn, B.M., Wu, F.Y., Lo, C.H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1-2): 119-146. https://doi.org/10.1016/s0009-2541(98)00197-1 doi: 10.1016/S0009-2541(98)00197-1
      Jiang, N., Chen, J.Z., Guo, J.H., et al., 2012. In Situ Zircon U-Pb, Oxygen and Hafnium Isotopic Compositions of Jurassic Granites from the North China Craton: Evidence for Triassic Subduction of Continental Crust and Subsequent Metamorphism-Related 18O Depletion. Lithos, 142-143: 84-94. https://doi.org/10.1016/j.lithos.2012.02.018
      Kemp, A.I.S., Hawkesworth, C.J., 2014. Growth and Differentiation of the Continental Crust from Isotope Studies of Accessory Minerals. Treatise on Geochemistry. Elsevier, Amsterdam, 379-421. https://doi.org/10.1016/b978-0-08-095975-7.00312-0
      Li, S.G., Wang, S.J., Guo, S.S., et al., 2014. Geochronology and Geochemistry of Leucogranites from the Southeast Margin of the North China Block: Origin and Migration. Gondwana Research, 26(3-4): 1111-1128. https://doi.org/10.1016/j.gr.2013.08.019
      Li, W.C., Chen, R.X., Zheng, Y.F., et al., 2013. Zirconological Tracing of Transition between Aqueous Fluid and Hydrous Melt in the Crust: Constraints from Pegmatite Vein and Host Gneiss in the Sulu Orogen. Lithos, 162-163: 157-174. https://doi.org/10.1016/j.lithos.2013.01.004
      Liégeois, J.P., 1998. Post-Collisional Magmatism. Lithos, 45: 560.
      Liou, J.G., Tsujimori, T., Zhang, R.Y., et al., 2004. Global UHP Metamorphism and Continental Subduction/Collision: The Himalayan Model. International Geology Review, 46(1): 1-27. https://doi.org/10.2747/0020-6814.46.1.1
      Liu, F.L., Liou, J.G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism: A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1): 1-39. https://doi.org/10.1016/j.jseaes.2010.08.007
      Liu, F.L., Robinson, P.T., Liu, P.H., 2012b. Multiple Partial Melting Events in the Sulu UHP Terrane: Zircon U-Pb Dating of Granitic Leucosomes within Amphibolite and Gneiss. Journal of Metamorphic Geology, 30(8): 887-906. https://doi.org/10.1111/j.1525-1314.2012.01005.x
      Liu, F.L., Xu, Z.Q., Katayama, I., et al., 2001. Mineral Inclusions in Zircons of Para- and Orthogneiss from Pre-Pilot Drillhole CCSD-PP1, Chinese Continental Scientific Drilling Project. Lithos, 59(4): 199-215. https://doi.org/10.1016/s0024-4937(01)00064-0 doi: 10.1016/S0024-4937(01)00064-0
      Liu, F.L., Xu, Z.Q., Yang, J.S., et al., 2004. Geochemical Characteristics and UHP Metamorphism of Granitic Gneisses in the Main Drilling Hole of Chinese Continental Scientific Drilling Project and Its Adjacent Area. Acta Petrologica Sinica, 20(1): 9-26(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200401001.htm
      Liu, S.G., Li, S.G., Guo, S.S., et al., 2012a. The Cretaceous Adakitic-Basaltic-Granitic Magma Sequence on South-Eastern Margin of the North China Craton: Implications for Lithospheric Thinning Mechanism. Lithos, 134-135: 163-178. https://doi.org/10.1016/j.lithos.2011.12.015
      Liu, Y.C., Wang, A.D., Rolfo, F., et al., 2009. Geochronological and Petrological Constraints on Palaeoproterozoic Granulite Facies Metamorphism in Southeastern Margin of the North China Craton. Journal of Metamorphic Geology, 27(2): 125-138. https://doi.org/10.1111/j.1525-1314.2008.00810.x
      Liu, Y.C., Zhang, P.G., Wang, C.C., et al., 2017. Petrology, Geochemistry and Zirconology of Impure Calcite Marbles from the Precambrian Metamorphic Basement at the Southeastern Margin of the North China Craton. Lithos, 290-291: 189-209. https://doi.org/10.1016/j.lithos.2017.08.011
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Ludwig, K.R., 2003. Isoplot Rev. 3.75: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley.
      Lugmair, G.W., Marti, K., 1978. Lunar Initial 143Nd/144Nd: Differential Evolution of the Lunar Crust and Mantle. Earth and Planetary Science Letters, 39(3): 349-357. https://doi.org/10.1016/0012-821x(78)90021-3 doi: 10.1016/0012-821X(78)90021-3
      Ma, Q., Xu, Y.G., 2021. Magmatic Perspective on Subduction of Paleo-Pacific Plate and Initiation of Big Mantle Wedge in East Asia. Earth-Science Reviews, 213: 103473. https://doi.org/10.1016/j.earscirev.2020.103473
      McDonough, W.F., Sun, S.S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
      Niu, Y.L., Zhao, Z.D., Zhu, D.C., et al., 2013. Continental Collision Zones are Primary Sites for Net Continental Crust Growth: A Testable Hypothesis. Earth-Science Reviews, 127: 96-110. https://doi.org/10.1016/j.earscirev.2013.09.004
      Nowell, G.M., Kempton, P.D., Noble, S.R., et al., 1998. High Precision Hf Isotope Measurements of MORB and OIB by Thermal Ionisation Mass Spectrometry: Insights into the Depleted Mantle. Chemical Geology, 149(3-4): 211-233. https://doi.org/10.1016/s0009-2541(98)00036-9 doi: 10.1016/S0009-2541(98)00036-9
      Patiño Douce, A.E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39(4): 689-710. https://doi.org/10.1093/petroj/39.4.689
      Prouteau, G., Scaillet, B., Pichavant, M., et al., 2001. Evidence for Mantle Metasomatism by Hydrous Silicic Melts Derived from Subducted Oceanic Crust. Nature, 410: 197-200. https://doi.org/10.1038/35065583
      Sawyer, E.W., Cesare, B., Brown, M., 2011. When the Continental Crust Melts. Elements, 7(4): 229-234. https://doi.org/10.2113/gselements.7.4.229
      Scherer, E., Münker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530): 683-687. https://doi.org/10.1126/science.1061372
      Schertl, H.P., Okay, A.I., 1994. A Coesite Inclusion in Dolomite in Dabie Shan, China: Petrological and Rheological Significance. European Journal of Mineralogy, 6(6): 995-1000. https://doi.org/10.1127/ejm/6/6/0995
      Sun, H., Gao, Y.J., Xiao, Y.L., et al., 2016. Lithium Isotope Fractionation during Incongruent Melting: Constraints from Post-Collisional Leucogranite and Residual Enclaves from Bengbu Uplift, China. Chemical Geology, 439: 71-82. https://doi.org/10.1016/j.chemgeo.2016.06.004
      Tang, J., Zheng, Y.F., Gong, B., et al., 2008. Extreme Oxygen Isotope Signature of Meteoric Water in Magmatic Zircon from Metagranite in the Sulu Orogen, China: Implications for Neoproterozoic Rift Magmatism. Geochimica et Cosmochimica Acta, 72(13): 3139-3169. https://doi.org/10.1016/j.gca.2008.04.017
      Tang, Y.W., Chen, L., Zhao, Z.F., et al., 2020. Geochemical Evidence for the Production of Granitoids through Reworking of the Juvenile Mafic Arc Crust in the Gangdese Orogen, Southern Tibet. Geological Society of America Bulletin, 132(7-8): 1347-1364. https://doi.org/10.1130/b35304.1 doi: 10.1130/B35304.1
      Valley, J.W., Kinny, P.D., Schulze, D.J., et al., 1998. Zircon Megacrysts from Kimberlite: Oxygen Isotope Variability among Mantle Melts. Contributions to Mineralogy and Petrology, 133(1-2): 1-11. https://doi.org/10.1007/s004100050432
      Vielzeuf, D., Montel, J.M., 1994. Partial Melting of Metagreywackes. Part Ⅰ. Fluid-Absent Experiments and Phase Relationships. Contributions to Mineralogy and Petrology, 117(4): 375-393. https://doi.org/10.1007/bf00307272 doi: 10.1007/BF00307272
      Wang, Q., Wyman, D.A., Xu, J.F., et al., 2007. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 71(10): 2609-2636. https://doi.org/10.1016/j.gca.2007.03.008
      Wang, S.J., Li, S.G., Liu, S.G., 2013. The Origin and Evolution of Low-δ18O Magma Recorded by Multi-Growth Zircons in Granite. Earth and Planetary Science Letters, 373: 233-241. https://doi.org/10.1016/j.epsl.2013.05.009
      Weinberg, R.F., Hasalová, P., 2015. Water-Fluxed Melting of the Continental Crust: A Review. Lithos, 212-215: 158-188. https://doi.org/10.1016/j.lithos.2014.08.021
      Weis, D., Kieffer, B., Maerschalk, C., et al., 2006. High-Precision Isotopic Characterization of USGS Reference Materials by TIMS and MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8): Q08006. https://doi.org/10.1029/2006gc001283 doi: 10.1029/2006GC001283/full
      Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x doi: 10.1111/j.1751-908X.1995.tb00147.x
      Wu, F.Y., Yang, J.H., Xu, Y.G., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47(1): 173-195. https://doi.org/10.1146/annurev-earth-053018-060342
      Wu, F.Y., Zhao, G.C., Wilde, S.A., et al., 2005. Nd Isotopic Constraints on Crustal Formation in the North China Craton. Journal of Asian Earth Sciences, 24(5): 523-545. https://doi.org/10.1016/j.jseaes.2003.10.011
      Xu, H.J., Ma, C.Q., Zhang, J.F., 2012. Generation of Early Cretaceous High-Mg Adakitic Host and Enclaves by Magma Mixing, Dabie Orogen, Eastern China. Lithos, 142-143: 182-200. https://doi.org/10.1016/j.lithos.2012.03.004
      Xu, H.J., Zhang, J.F., Wang, Y.F., et al., 2016. Late Triassic Alkaline Complex in the Sulu UHP Terrane: Implications for Post-Collisional Magmatism and Subsequent Fractional Crystallization. Gondwana Research, 35: 390-410. https://doi.org/10.1016/j.gr.2015.05.017
      Xu, L.J., Xiao, Y.L., Wu, F., et al., 2013. Anatomy of Garnets in a Jurassic Granite from the South-Eastern Margin of the North China Craton: Magma Sources and Tectonic Implications. Journal of Asian Earth Sciences, 78: 198-221. https://doi.org/10.1016/j.jseaes.2012.11.026
      Xu, S.T., Su, W., Liu, Y.C., et al., 1992. Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting. Science, 256(5053): 80-82. https://doi.org/10.1126/science.256.5053.80
      Xu, W.L., Wang, Q.H., Yang, D.B., et al., 2005. SHRIMP Zircon U-Pb Dating in Jingshan "Migmatitic Granite", Bengbu and Its Geological Significance. Science in China: Earth Sciences, 48(2): 185-191. https://doi.org/10.1360/03yd0045
      Yang, D.B., Xu, W.L., Wang, Q.H., et al., 2010a. Chronology and Geochemistry of Mesozoic Granitoids in the Bengbu Area, Central China: Constraints on the Tectonic Evolution of the Eastern North China Craton. Lithos, 114(1-2): 200-216. https://doi.org/10.1016/j.lithos.2009.08.009
      Yang, J.H., Wu, F.Y., Chung, S.L., et al., 2005. Petrogenesis of Early Cretaceous Intrusions in the Sulu Ultrahigh-Pressure Orogenic Belt, East China and Their Relationship to Lithospheric Thinning. Chemical Geology, 222(3-4): 200-231. https://doi.org/10.1016/j.chemgeo.2005.07.006
      Yang, Y.H., Chu, Z.Y., Wu, F.Y., et al., 2011a. Precise and Accurate Determination of Sm, Nd Concentrations and Nd Isotopic Compositions in Geological Samples by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 26(6): 1237. https://doi.org/10.1039/c1ja00001b
      Yang, Y.H., Wu, F.Y., Xie, L.W., et al., 2011b. High-Precision Direct Determination of the 87Sr/86Sr Isotope Ratio of Bottled Sr-Rich Natural Mineral Drinking Water Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 66(8): 656-660. https://doi.org/10.1016/j.sab.2011.07.004
      Yang, Y.H., Zhang, H.F., Chu, Z.Y., et al., 2010b. Combined Chemical Separation of Lu, Hf, Rb, Sr, Sm and Nd from a Single Rock Digest and Precise and Accurate Isotope Determinations of Lu-Hf, Rb-Sr and Sm-Nd Isotope Systems Using Multi-Collector ICP-MS and TIMS. International Journal of Mass Spectrometry, 290(2-3): 120-126. https://doi.org/10.1016/j.ijms.2009.12.011
      Yuan, H.L., Gao, S., Dai, M.N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1-2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003
      Zhang, J., Zhao, Z.F., Zheng, Y.F., et al., 2010. Postcollisional Magmatism: Geochemical Constraints on the Petrogenesis of Mesozoic Granitoids in the Sulu Orogen, China. Lithos, 119(3-4): 512-536. https://doi.org/10.1016/j.lithos.2010.08.005
      Zhao, Z.F., Dai, F.Q., Chen, Q., 2019. Continental Slab-Mantle Interaction: Geochemical Evidence from Post-Collisional Andesitic Rocks in the Dabie Orogen. Earth Science, 44(12): 4119-4127(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912021.htm
      Zhao, Z.F., Dai, L.Q., Zheng, Y.F., 2013. Postcollisional Mafic Igneous Rocks Record Crust-Mantle Interaction during Continental Deep Subduction. Scientific Reports, 3: 3413. https://doi.org/10.1038/srep03413
      Zhao, Z.F., Liu, Z.B., Chen, Q., 2017b. Melting of Subducted Continental Crust: Geochemical Evidence from Mesozoic Granitoids in the Dabie-Sulu Orogenic Belt, East-Central China. Journal of Asian Earth Sciences, 145: 260-277. https://doi.org/10.1016/j.jseaes.2017.03.038
      Zhao, Z.F., Zheng, Y.F., 2009. Remelting of Subducted Continental Lithosphere: Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt. Science in China: Earth Sciences, 52(9): 1295-1318. https://doi.org/10.1007/s11430-009-0134-8
      Zhao, Z.F., Zheng, Y.F., Chen, Y.X., et al., 2017a. Partial Melting of Subducted Continental Crust: Geochemical Evidence from Synexhumation Granite in the Sulu Orogen. Geological Society of America Bulletin, 129(11-12): 1692-1707. https://doi.org/10.1130/b31675.1
      Zhao, Z.F., Zheng, Y.F., Gao, T.S., et al., 2006. Isotopic Constraints on Age and Duration of Fluid-Assisted High-Pressure Eclogite-Facies Recrystallization during Exhumation of Deeply Subducted Continental Crust in the Sulu Orogen. Journal of Metamorphic Geology, 24(8): 687-702. https://doi.org/10.1111/j.1525-1314.2006.00662.x
      Zheng, Y.F., 2008. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Chinese Science Bulletin, 53(20): 3081-3104. https://doi.org/10.1007/s11434-008-0388-0 http://www.cqvip.com/Main/Detail.aspx?id=28405793
      Zheng, Y.F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328: 5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005
      Zheng, Y.F., Chen, Y.X., 2019. Crust-Mantle Interaction in the Continental Subduction Zone. Journal of Earth Sciences, 44(12): 3961-3983.
      Zheng, Y.F., Chen, R.X., Zhao, Z.F., 2009. Chemical Geodynamics of Continental Subduction-Zone Metamorphism: Insights from Studies of the Chinese Continental Scientific Drilling (CCSD) Core Samples. Tectonophysics, 475(2): 327-358. https://doi.org/10.1016/j.tecto.2008.09.014
      Zheng, Y.F., Chen, Y.X., Dai, L.Q., et al., 2015. Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens. Science China Earth Sciences, 58(7): 1045-1069. https://doi.org/10.1007/s11430-015-5097-3
      Zheng, Y.F., Fu, B., Gong, B., et al., 2003. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 62(1-2): 105-161. https://doi.org/10.1016/s0012-8252(02)00133-2 doi: 10.1016/S0012-8252(02)00133-2
      Zheng, Y.F., Wu, Y.B., Chen, F.K., et al., 2004. Zircon U-Pb and Oxygen Isotope Evidence for a Large-Scale 18O Depletion Event in Igneous Rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta, 68(20): 4145-4165. https://doi.org/10.1016/j.gca.2004.01.007
      Zheng, Y.F., Zhao, Z.F., 2017. Introduction to the Structures and Processes of Subduction Zones. Journal of Asian Earth Sciences, 145: 1-15. https://doi.org/10.1016/j.jseaes.2017.06.034
      Zheng, Y.F., Zhao, Z.F., Chen, R.X., 2018. Ultrahigh-Pressure Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: Compositional Inheritance and Metamorphic Modification. Geological Society, London, Special Publications, 474(1): 89-132. https://doi.org/10.1144/sp474.9 http://www.researchgate.net/publication/325156732_Ultrahigh-pressure_metamorphic_rocks_in_the_Dabie-Sulu_orogenic_belt_compositional_inheritance_and_metamorphic_modification/download
      Zhu, G., Liu, G.S., Niu, M.L., et al., 2009. Syn-Collisional Transform Faulting of the Tan-Lu Fault Zone, East China. International Journal of Earth Sciences, 98(1): 135-155. https://doi.org/10.1007/s00531-007-0225-8
      戴立群, 赵子福, 2019. 大陆碰撞造山带镁铁质岩浆岩记录俯冲古洋壳物质再循环. 地球科学, 44(12): 4128-4134. doi: 10.3799/dqkx.2019.240
      郭素淑, 李曙光, 2007. 淡色花岗岩的岩石学和地球化学特征及其成因. 地学前缘, 14(6): 290-298. doi: 10.3321/j.issn:1005-2321.2007.06.036
      刘福来, 许志琴, 杨经绥, 等, 2004. 中国大陆科学钻探工程主孔及周边地区花岗质片麻岩的地球化学性质和超高压变质作用标志的识别. 岩石学报, 20(1): 9-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401001.htm
      赵子福, 代富强, 陈启, 2019. 大陆板片-地幔相互作用: 来自大别造山带碰撞后安山质火山岩的地球化学证据. 地球科学, 44(12): 4119-4127. doi: 10.3799/dqkx.2019.244
      郑永飞, 陈伊翔, 2019. 大陆俯冲带壳幔相互作用. 地球科学, 44(12): 3961-3983. doi: 10.3799/dqkx.2019.982
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(5)

      Article views (1313) PDF downloads(86) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return