• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 9
    Oct.  2021
    Turn off MathJax
    Article Contents
    Luo Hongming, Han Xiqiu, Wang Yejian, Wu Xueting, Cai Yiyang, Yang Ming, 2021. Preliminary Study on the Enrichment Mechanism of Strategic Metals and Their Resource Prospects in Global Modern Seafloor Massive Sulfide Deposits. Earth Science, 46(9): 3123-3138. doi: 10.3799/dqkx.2020.396
    Citation: Luo Hongming, Han Xiqiu, Wang Yejian, Wu Xueting, Cai Yiyang, Yang Ming, 2021. Preliminary Study on the Enrichment Mechanism of Strategic Metals and Their Resource Prospects in Global Modern Seafloor Massive Sulfide Deposits. Earth Science, 46(9): 3123-3138. doi: 10.3799/dqkx.2020.396

    Preliminary Study on the Enrichment Mechanism of Strategic Metals and Their Resource Prospects in Global Modern Seafloor Massive Sulfide Deposits

    doi: 10.3799/dqkx.2020.396
    • Received Date: 2020-11-11
      Available Online: 2021-10-14
    • Publish Date: 2021-10-14
    • Seafloor massive sulfides (SMS), which are rich in strategic metals such as Cu, Cd, Au, Fe, Ag, and Co, are strategic resources available for human development and utilization in the future. We collected the geochemical composition data of 3 946 SMS samples in global hydrothermal systems. They were classified into six types according to the tectonic setting: fast-spreading ridge type, medium-spreading ridge type, slow-spreading ridge type, ultra-slow spreading ridge type, back-arc spreading center type, and arc volcano type, respectively. The distribution and main controlling factors of SMS strategic metals are analyzed by multivariate statistical method, and then the resource prospects of SMS strategic metals are discussed. It is found that the strategic metals in SMS deposits of different tectonic environments are quite different. The SMS deposits at mid-ocean ridge tend to be enriched in Cu+Fe+Co±Mo, while the SMS deposits in the back-arc spreading center and arc volcano tend to be enriched in Zn+Pb+Cd+Sb+Ag±Au. The main controlling factors of SMS strategic metals are metallogenic temperature, ore-forming source, pH and redox conditions, respectively. The fluid temperature is mainly controlled by the water depth. The sources of ore-forming materials are mainly controlled by the structural geological environment. The pH and redox properties are mainly controlled by the type of wall rock. We propose that the back-arc spreading center with water depth of 1 080-2 160 m could be key targets for strategic metals such as Cu, Au, Cd and Ag, while the regions such as non-transform discontinuous and detachment fault extensional shear zone of slow- and ultraslow-spreading ridges with water depth greater than 2 650 m could be key targets for Cu, Au, Fe, Co, etc.

       

    • loading
    • Cathles, L. M., 2011. What Processes at Mid-Ocean Ridges Tell Us about Volcanogenic Massive Sulfide Deposits. Mineralium Deposita, 46(5-6): 639-657. https://doi.org/10.1007/s00126-010-0292-9
      Charlou, J. L., Donval, J. P., Konn, C., et al., 2010. High Production and Fluxes of H2and CH4and Evidence of Abiotic Hydrocarbon Synthesis by Serpentinization in Ultramafic-Hosted Hydrothermal Systems on the Mid-Atlantic Ridge. In: Rona, P. A., Devey, C. W., Dyment, J., et al., eds., Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. American Geophysical Union, Washington, D. C. .
      Chen, Y., Han, X. Q., Wang, Y. J., et al., 2020. Precipitation of Calcite Veins in Serpentinized Harzburgite at Tianxiu Hydrothermal Field on Carlsberg Ridge (3.67°N), Northwest Indian Ocean: Implications for Fluid Circulation. Journal of Earth Science, 31(1): 91-101. https://doi.org/10.1007/s12583-020-0876-y
      de Ronde, C. E. J., Massoth, G. J., Butterfield, D. A., et al., 2011. Submarine Hydrothermal Activity and Gold-Rich Mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Mineralium Deposita, 46(5-6): 541-584. https://doi.org/10.1007/s00126-011-0345-8
      DeMets, C., Gordon, R. G., Argus, D. F, 2010. Geologically Current Plate Motions. Geophysical Journal International, 181(1): 1-80. https://doi.org/10.1111/j.1365-246X.2009.04491.x
      Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., et al., 2003. Isometric Logratio Transformations for Compositional Data Analysis. Mathematical Geology, 35(3): 279-300. https://doi.org/10.1023/A:1023818214614
      Fouquet, Y., Cambon, P., Etoubleau, J., et al., 2010. Geodiversity of Hydrothermal Processes along the Mid-Atlantic Ridge and Ultramafic-Hosted Mineralization: A New Type of Oceanic Cu-Zn-Co-Au Volcanogenic Massive Sulfide Deposit. In: Rona, P. A., Devey, C. W., Dyment, J., et al., eds., Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. American Geophysical Union, Washington, D. C. .
      Fouquet, Y., Zierenberg, R. A., Miller, D. J., et al., 1998. Shipboard Scientific Party, Middle Valley: Bent Hill Area (Site 1035). In: Fouquet, Y., Zierenberg, R. A., Miller, D. J., et al., eds., Proceedings of the Ocean Drilling Program-Initial Reports 169. The Ocean Drilling Program, College Station.
      Fuchs, S., Hannington, M. D., Petersen, S., 2019. Divining Gold in Seafloor Polymetallic Massive Sulfide Systems. Mineralium Deposita, 54(6): 789-820. https://doi.org/10.1007/s00126-019-00895-3
      Graedel, T. E., Harper, E. M., Nassar, N. T., et al., 2015. Criticality of Metals and Metalloids. PNAS, 112(14): 4257-4262. https://doi.org/10.1073/pnas.1500415112
      Hannington, M. D., 2014. Volcanogenic Massive Sulfide Deposits. Treatise on Geochemistry, 47(5): 463-488. https://doi.org/10.1016/b978-0-08-095975-7.01120-7
      Hannington, M. D., de Ronde, C. E., Petersen S., 2005. Sea-Floor Tectonics and Submarine Hydrothermal Systems. In: Hedenquist, J., Thompson, G., Goldfarb, R. J., Richards, J. P., eds., Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littleton
      Hannington, M. D., Galley, A. G., Herzig, P. M., et al., 1998. Comparison of the TAG Mound and Stockwork Complex with Cyprus-Type, Massive Sulfide Deposits. In: Herzig, P. M., Humphris, S. E., Miller, D. J., et al., eds., Proceedings of the Ocean Drilling Program-Scientific Results. The Ocean Drilling Program, College Station.
      Hannington, M. D., Jamieson, J., Monecke, T., et al., 2011. The Abundance of Seafloor Massive Sulfide Deposits. Geology, 39(12): 1155-1158. https://doi.org/10.1130/g32468.1
      Hannington, M. D., Petersen, S., Herzig, P. M., et al., 2004. A Global Database of Seafloor Hydrothermal Systems, Including a Digital Database of Geochemical Analyses of Seafloor Polymetallic Sulfides. Geological Survey of Canada, Ottawa.
      Hein, J. R., Mizell, K., Koschinsky, A., et al., 2013. Deep-Ocean Mineral Deposits as a Source of Critical Metals for High- and Green-Technology Applications: Comparison with Land-Based Resources. Ore Geology Reviews, 51: 1-14. https://doi.org/10.1016/j.oregeorev.2012.12.001
      Kawasumi, S., Chiba, H., 2017. Redox State of Seafloor Hydrothermal Fluids and Its Effect on Sulfide Mineralization. Chemical Geology, 451: 25-37. https://doi.org/10.1016/j.chemgeo.2017.01.001
      Large, R. R., 1992. Australian Volcanic-Hosted Massive Sulfide Deposits; Features, Styles, and Genetic Models. Economic Geology, 87(3): 471-510. https://doi.org/10.2113/gsecongeo.87.3.471
      Lehrmann, B., Stobbs, I. J., Lusty P. A., et al., 2018. Insights into Extinct Seafloor Massive Sulfide Mounds at the TAG, Mid-Atlantic Ridge. Minerals, 8(7): 302. https://doi.org/10.3390/min8070302
      Levin, L. A., Amon, D. J., Lily, H, 2020. Challenges to the Sustainability of Deep-Seabed Mining. Nature Sustainability, 3(10): 784-794. https://doi.org/10.1038/s41893-020-0558-x
      Lipton, I., Gleeson, E., Munro, P., 2018. Preliminary Economic Assessment of the Solwara Project, Bismarck Sea, PNG. Nautilus Minerals Niugini Limited, Vancouver.
      Lusty, P. A. J., Hein, J. R., Josso, P., 2018. Formation and Occurrence of Ferromanganese Crusts: Earth's Storehouse for Critical Metals. Elements, 14(5): 313-318. https://doi.org/10.2138/gselements.14.5.313
      Mao, J. W., Yang, Z. X., Xie, G. Q., et al., 2019. Critical Minerals: International Trends and Thinking. Mineral Deposits, 38(4): 689-698 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201904001.htm
      Melekestseva, I. Y., Maslennikov, V. V., Tret'yakov, G. A., et al., 2017. Gold- and Silver-Rich Massive Sulfides from the Semenov-2 Hydrothermal Field, 13°31.13'N, Mid-Atlantic Ridge: A Case of Magmatic Contribution? Economic Geology, 112(4): 741-773. https://doi.org/10.2113/econgeo.112.4.741
      Monecke, T., Petersen, S., Hannington, M. D., 2014. Constraints on Water Depth of Massive Sulfide Formation: Evidence from Modern Seafloor Hydrothermal Systems in Arc-Related Settings. Economic Geology, 109(8): 2079-2101. https://doi.org/10.2113/econgeo.109.8.2079
      Monecke, T., Petersen, S., Hannington, M. D., et al., 2016. The Minor Element Endowment of Modern Sea-Floor Massive Sulfides and Comparison with Deposits Hosted in Ancient Volcanic Successions. In: Verplanck, P. L., Hitzman, M. W., eds., Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, Littleton.
      Mosier, D. L., Berger, V. I., Singer, D. A., 2009. Volcanogenic Massive Sulfide Deposits of the World; Database and Grade and Tonnage Models. U.S. Geological Survey, Reston.
      Murton, B. J., Lehrmann, B., Dutrieux, A. M., et al., 2019. Geological Fate of Seafloor Massive Sulphides at the TAG Hydrothermal Field (Mid-Atlantic Ridge). Ore Geology Reviews, 107: 903-925. https://doi.org/10.1016/j.oregeorev.2019.03.005
      Padyar, F., Rahgoshay, M., Tarantola, A., et al. 2020. High ƒH2-ƒS2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite. Journal of Earth Science, 31(3): 523-535. https://doi.org/10.1007/s12583-019-1023-6
      Pak, S. J., Seo, I., Lee, K. Y., et al., 2019. Rare Earth Elements and Other Critical Metals in Deep Seabed Mineral Deposits: Composition and Implications for Resource Potential. Minerals, 9(1): 3-22. https://doi.org/10.3390/min9010003
      Petersen, S., Herzig, P. M., Kuhn, T., et al., 2005. Shallow Drilling of Seafloor Hydrothermal Systems Using the BGS Rockdrill: Conical Seamount (New Ireland Fore-Arc) and PACMANUS (Eastern Manus Basin), Papua New Guinea. Marine Georesources & Geotechnology, 23(3): 175-193. https://doi.org/10.1080/10641190500192185
      Petersen, S., Lehrmann, B., Murton, B. J., 2018. Modern Seafloor Hydrothermal Systems: New Perspectives on Ancient Ore-Forming Processes. Elements, 14(5): 307-312. https://doi.org/10.2138/gselements.14.5.307
      Toffolo, L., Nimis, P., Tretyakov, G. A., et al., 2020. Seafloor Massive Sulfides from Mid-Ocean Ridges: Exploring the Causes of Their Geochemical Variability with Multivariate Analysis. Earth-Science Reviews, 201: 102958. https://doi.org/10.1016/j.earscirev.2019.102958
      U.S. Geological Survey, 2020. Mineral Commodity Summaries 2020. U.S. Geological Survey, Reston.
      Wang, D. H., 2019. Study on Critical Mineral Resources: Significance of Research, Determination of Types, Attributes of Resources, Progress of Prospecting, Problems of Utilization, and Direction of Exploitation. Acta Geologica Sinica, 93(6): 1189-1209 (in Chinese with English abstract).
      Wang, Y. J., Han, X. Q., Petersen, S., et al., 2014. Mineralogy and Geochemistry of Hydrothermal Precipitates from Kairei Hydrothermal Field, Central Indian Ridge. Marine Geology, 354: 69-80. https://doi.org/10.1016/j.margeo.2014.05.003
      Yang, K., Scott, S. D., 2006. Magmatic Fluids as a Source of Metals in Seafloor Hydrothermal Systems. In: Christie, D. M., Fisher, C. R., Lee, S. M., et al., eds., Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. American Geophysical Union, Washington, D. C. .
      Zierenberg, R. A., Fouquet, Y., Miller, D. J., et al., 1998. The Deep Structure of a Sea-Floor Hydrothermal Deposit. Nature, 392(6675): 485-488. https://doi.org/10.1038/33126
      毛景文, 杨宗喜, 谢桂青, 等, 2019. 关键矿产: 国际动向与思考. 矿床地质, 38(4): 689-698. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904001.htm
      王登红, 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003
    • dqkxzx-46-9-3123-附录B.xlsx
      dqkxzx-46-9-3123-附表1.xlsx
      dqkxzx-46-9-3123-附录A.docx
      dqkxzx-46-9-3123-附表2.xlsx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(3)

      Article views (1733) PDF downloads(151) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return