• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 3
    Mar.  2021
    Turn off MathJax
    Article Contents
    Tian Yuan, Chen Ling, Tang Limei, Gao Peng, Fang Yinxia, 2021. Research Progress on Mantle Evolution and Magmatism in the Yap Trench, Western Pacific. Earth Science, 46(3): 840-852. doi: 10.3799/dqkx.2021.003
    Citation: Tian Yuan, Chen Ling, Tang Limei, Gao Peng, Fang Yinxia, 2021. Research Progress on Mantle Evolution and Magmatism in the Yap Trench, Western Pacific. Earth Science, 46(3): 840-852. doi: 10.3799/dqkx.2021.003

    Research Progress on Mantle Evolution and Magmatism in the Yap Trench, Western Pacific

    doi: 10.3799/dqkx.2021.003
    • Received Date: 2020-10-30
    • Publish Date: 2021-03-01
    • Mantle evolution and magmatism in subduction zone are important geological processes in which circulation of materials and energy takes place among the solid layers of the earth. the Yap trench in the western Pacific ocean is an ideal place to study the evolution of subduction zone under complex conditions because of its unique geological structural characteristics such as extremely short trench-arc distance and ocean ridge-trench collision. In order to explore the mantle evolution and magmatism of the Yap trench, this paper analyzes the genesis of the igneous rocks of the Yap trench by integrating the previous research data on the igneous rocks of the Yap trench. According to the formation conditions of the igneous rocks, the mantle evolution and magmatism during the subduction of the Caroline Plate to the Philippine Sea Plate are discussed. The results show that igneous rocks of the Yap trench have the typical characteristics of subduction-related igneous rocks. The geochemical characteristics of peridotite indicate that the melting degree of mantle in Yap trench is 20%-25%, and the mantle is subjected to metasomatism of fluid and melt during the process of partial melting.The Re-Os isotope characteristics indicate that there is an ancient residual mantle with a Re depleted age of 1.16 Ga in the mantle of the Yap trench, indicating that the mantle may have experienced multi-stage melting events, resulting in a ultra-depleted mantle in the Yap trench. The origin of the Yap arc is still controversial up to now, mainly including: (1) The Yap arc is a part of the ocean crust of the Parece Vela basin, which was thrusting above the original Yap Arc in the Miocene due to the collision of the Caroline ridge. (2) Yap Arc experienced several stages of island arc magmatism in different tectonic periods, including forearc basalts at the initial stage of subduction (~52 Ma), island arc basalts after subduction (~25 Ma), and island arc basalts (7-11 Ma) after collision with the Caroline ridge (21 Ma). The 7-11 Ma island arc basalts indicate that the island arc magmatism in the Yap trench has not completely stopped due to the collision of the Caroline ridge and is likely rejuvenated in the Late Miocene.

       

    • loading
    • Ahmed, A. H., Arai, S., Abdel-Aziz, Y. M., et al., 2005. Spinel Composition as a Petrogenetic Indicator of the Mantle Section in the Neoproterozoic Bou Azzer Ophiolite: Anti-Atlas, Morocco. Precambrian Research, 138(3): 225-234. https://doi.org/10.1016/j.precamres.2005.05.004
      Anders, E., Grevesse, N., 1989. Abundances of the Elements: Meteoritic and Solar. Geochimica et Cosmochimica Acta, 53(1): 197-214. https://doi.org/10.1016/0016-7037(89)90286-X
      Barnes, S. J., Roeder, P. L., 2001. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. Journal of Petrology, 42(1): 2279-2302. https://doi.org/10.1093/petrology/42.12.2279
      Beccaluva, L., Macciotta, G., Savelli, C., et al., 1980. Geochemistry and K/Ar Ages of Volcanics Dredged in the Philippine Sea (Mariana, Yap, and Palau Trenches and Parece Vela Basin). In: Hayes, D. E., ed., The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. American Geophysical Union, Washington, D. C.. https://doi.org/10.1029/gm023p0247
      Bird, P., 2003. An Updated Digital Model of Plate Boundaries. Geochemistry, Geophysics, Geosystems, 4(3): 1027. https://doi.org/10.1029/2001GC000252
      Bracey, D. R., 1975. Reconnaissance Geophysical Survey of the Caroline Basin. Geological Society of America Bulletin, 86(6): 775-784. https://doi.org/10.1130/0016-7606(1975)86<775:RGSOTC>2.0.CO;2 doi: 10.1130/0016-7606(1975)86<775:RGSOTC>2.0.CO;2
      Brunelli, D., Seyler, M., Cipriani, A., et al., 2006. Discontinuous Melt Extraction and Weak Refertilization of Mantle Peridotites at the Vema Lithospheric Section (Mid-Atlantic Ridge). Journal of Petrology, 47(4): 745-771. https://doi.org/10.1093/petrology/egi092
      Chen, L., Tang, L. M., Li, X. H., et al., 2019a. Ancient Melt Depletion and Metasomatic History of the Subduction Zone Mantle: Osmium Isotope Evidence of Peridotites from the Yap Trench, Western Pacific. Minerals, 9(12): 717. https://doi.org/10.3390/min9120717
      Chen, L., Tang, L. M., Li, X. H., et al., 2019b. Geochemistry of Peridotites from the Yap Trench, Western Pacific: Implications for Subduction Zone Mantle Evolution. International Geology Review, 61(9): 1037-1051. https://doi.org/10.1080/00206814.2018.1484305
      Crawford, A. J., Beccaluva, L., Serri, G., et al., 1986. Petrology, Geochemistry and Tectonic Implications of Volcanics Dredged from the Intersection of the Yap and Mariana Trenches. Earth and Planetary Science Letters, 80(3-4): 265-280. https://doi.org/10.1016/0012-821X(86)90110-X
      Dick, H. J. B., Bullen, T., 1984. Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas. Contributions to Mineralogy and Petrology, 86(1): 54-76. https://doi.org/10.1007/BF00373711
      Fornari, D. J., Weissel, J. K., Perfit, M. R., et al., 1979. Petrochemistry of the Sorol and Ayu Troughs: Implications for Crustal Accretion at the Northern and Western Boundaries of the Caroline Plate. Earth and Planetary Science Letters, 45(1): 1-15. https://doi.org/10.1016/0012-821X(79)90102-X
      Forsyth, D., Uyedaf, S., 1975. On the Relative Importance of the Driving Forces of Plate Motion. Geophysical Journal of the Royal Astronomical Society, 43(1): 163-200. https://doi.org/10.1111/j.1365-246X.1975.tb00631.x
      Fujiwara, T., Tamura, C., Nishizawa, A., et al., 2000. Morphology and Tectonics of the Yap Trench. Marine Geophysical Researches, 21(1-2): 69-86. https://doi.org/10.1023/A:1004781927661
      Gill, J. B., 1981. Bulk Chemical Composition of Orogenic Andesites. Orogenic Andesites and Plate Tectonics. Springer, Berlin. https: //doi.org/10.1007/978-3-642-68012-0_5
      Hart, S. R., 1984. A Large-Scale Isotope Anomaly in the Southern Hemisphere Mantle. Nature, 309: 753-757. https://doi.org/10.1038/309753a0
      Hawkins, J., Batiza, R., 1977. Metamorphic Rocks of the Yap Arc-Trench System. Earth and Planetary Science Letters, 37(2): 216-229. https://doi.org/10.1016/0012-821X(77)90166-2
      Hellebrand, E., Snow, J. E., Mühe, R., 2002. Mantle Melting Beneath Gakkel Ridge (Arctic Ocean): Abyssal Peridotite Spinel Compositions. Chemical Geology, 182(2-4): 227-235. https://doi.org/10.1016/S0009-2541(01)00291-1
      Jagoutz, E., Palme, H., Baddenhausen, H., et al., 1979. The Abundance of Major, Minor and Trace Elements in the Earth's Mantle as Derived from Primitive Ultramafic Nodules. Lunar and Planetary Science Conference, 10th, Houston.
      Kasuga, S., Ohara, Y., 1997. A New Model of Back-Arc Spreading in the Parece Vela Basin, Northwest Pacific Margin. Island Arc, 6(3): 316-326. https://doi.org/10.1111/j.1440-1738.1997.tb00181.x
      Lee, S. M., 2004. Deformation from the Convergence of Oceanic Lithosphere into Yap Trench and Its Implications for Early-Stage Subduction. Journal of Geodynamics, 37(1): 83-102. https://doi.org/10.1016/j.jog.2003.10.003
      Li, D. Y., Xiao, Y. L., Wang, Y. Y., et al., 2019. Mg-Li-Fe-Cr Isotopic Fractionation during Subduction. Earth Science, 44(12): 4081-4085 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912016.htm
      McCabe, R., Uyeda, S., 1983. Hypothetical Model for the Bending of the Mariana Arc. In: Hayes, D. E., ed., The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. American Geophysical Union, Washington, D. C.. https://doi.org/10.1029/gm027p0281
      Michibayashi, K., Ohara, Y., Stern, R. J., et al., 2009. Peridotites from a Ductile Shear Zone within Back-Arc Lithospheric Mantle, Southern Mariana Trench: Results of a Shinkai 6500 Dive. Geochemistry, Geophysics, Geosystems, 10(5): Q05X06. https://doi.org/10.1029/2008GC002197
      Niu, Y. L., 2004. Bulk-Rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-Melting Processes Beneath Mid-Ocean Ridges. Journal of Petrology, 45(12): 2423-2458. https://doi.org/10.1093/petrology/egh068
      Ohara, Y., Fujioka, K., Ishii, T., et al., 2003. Peridotites and Gabbros from the Parece Vela Backarc Basin: Unique Tectonic Window in an Extinct Backarc Spreading Ridge. Geochemistry, Geophysics, Geosystems, 4(7): 8611. https://doi.org/10.1029/2002gc000469
      Ohara, Y., Fujioka, K., Ishizuka, O., et al., 2002b. Peridotites and Volcanics from the Yap Arc System: Implications for Tectonics of the Southern Philippine Sea Plate. Chemical Geology, 189(1-2): 35-53. https://doi.org/10.1016/S0009-2541(02)00062-1
      Ohara, Y., Ishii, T., 1998. Peridotites from the Southern Mariana Forearc: Heterogeneous Fluid Supply in Mantle Wedge. The Island Arc, 7(3): 541-558. https://doi.org/10.1111/j.1440-1738.1998.00209.x
      Ohara, Y., Stern, R. J., Ishii, T., et al., 2002a. Peridotites from the Mariana Trough: First Look at the Mantle Beneath an Active Back-Arc Basin. Contributions to Mineralogy and Petrology, 143(1): 1-18. https://doi.org/10.1007/s00410-001-0329-2
      Parkinson, I. J., Pearce, J. A., Thirlwall, M. F., et al., 1992. Trace Element Geochemistry of Peridotites from the Izu-Bonin-Mariana Forearc, Leg 125. In: Taylor, B., Fujioka, K., et al., eds., Proceedings of the Ocean Drilling Program, 125 Scientific Results. Ocean Drilling Program, College Station. https://doi.org/10.2973/odp.proc.sr.125.183.1992
      Parsons, B., McKenzie, D., 1978. Mantle Convection and the Thermal Structure of the Plates. Journal of Geophysical Research: Solid Earth, 83(B9): 4485-4496. https://doi.org/10.1029/JB083iB09p04485
      Peacock, S. M., Rushmer, T., Thompson, A. B., 1994. Partial Melting of Subducting Oceanic Crust. Earth and Planetary Science Letters, 121(1-2): 227-244. https://doi.org/10.1016/0012-821X(94)90042-6
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
      Saboda, K. L., Fryer, P. B., Maekawa, H., et al., 1992. Metamorphism of Ultramafic Clasts from Conical Seamount: Sites 778, 779, and 780. In: Fryer, P., Pearce, J. A., Stokking, L. B., et al., eds., Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, College Station.
      Sato, T., Kasahara, J., Katao, H., et al., 1997. Seismic Observations at the Yap Islands and the Northern Yap Trench. Tectonophysics, 271(3-4): 285-294. https://doi.org/10.1016/S0040-1951(96)00251-X
      Sdrolias, M., Roest, W. R., Müller, R. D., 2004. An Expression of Philippine Sea Plate Rotation: The Parece Vela and Shikoku Basins. Tectonophysics, 394(1-2): 69-86. https://doi.org/10.1016/j.tecto.2004.07.061
      Seno, T., Stein, S., Gripp, A. E., 1993. A Model for the Motion of the Philippine Sea Plate Consistent with NUVEL-1 and Geological Data. Journal of Geophysical Research: Solid Earth, 98(B10): 17941-17948. https://doi.org/10.1029/93jb00782
      Shiraki, K., 1971. Metamorphic Basement Rocks of Yap Islands, Western Pacific: Possible Oceanic Crust beneath an Island Arc. Earth and Planetary Science Letters, 13(1): 167-174. https://doi.org/10.1016/0012-821X(71)90120-8
      Stern, R. J., Bloomer, S. H., 1992. Subduction Zone Infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California Arcs. Geological Society of America Bulletin, 104(12): 1621-1636. https://doi.org/10.1130/0016-7606(1992)1041621:szieft>2.3.co;2 doi: 10.1130/0016-7606(1992)1041621:szieft>2.3.co;2
      Stern, R. J., 2004. Subduction Initiation: Spontaneous and Induced. Earth and Planetary Science Letters, 226(3-4): 275-292. https://doi.org/10.1016/S0012-821X(04)00498-4
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Wang, C. G., Xu, W. L., 2019. An Experimental of Crust-Mantle Interaction in Subduction Zones: Implications for Genesis of Mantle Heterogeneity. Earth Science, 44(12): 4112-4118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912020.htm
      Weissel, J. K., Anderson, R. N., 1978. Is there a Caroline Plate?. Earth and Planetary Science Letters, 41(2): 143-158. https://doi.org/10.1016/0012-821X(78)90004-3
      Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1-2): 53-72. https://doi.org/10.1016/j.epsl.2004.12.005
      Yang, Y. M., Wu, S. G., Gao, J. W., et al., 2018. Geology of the Yap Trench: New Observations from a Transect near 10°N from Manned Submersible Jiaolong. International Geology Review, 60(16): 1941-1953. https://doi.org/10.1080/00206814.2017.1394226
      Zhang, J., Zhang, G. L., 2020. Geochemical and Chronological Evidence for Collision of Proto-Yap Arc/Caroline Plateau and Rejuvenated Plate Subduction at Yap Trench. Lithos, 370-371: 105616. https://doi.org/10.1016/j.lithos.2020.105616
      Zhang, Z., Li, S. Z., 2019. Tectonic Evolution of the Yap Trench-Arc System. Marine Geology & Quaternary Geology, 39(5): 138-146 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201905012.htm
      Zhang, Z. Y., Dong, D. D., Zhang, G. X., et al., 2017. Topographic Constraints on the Subduction Erosion of the Yap Arc, Western Pacific. Marine Geology & Quaternary Geology, 37(1): 41-50 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201701006.htm
      李东永, 肖益林, 王洋洋, 等, 2019. 板块俯冲过程中的Mg-Li-Fe-Cr同位素分馏. 地球科学, 44(12): 4081-4085. doi: 10.3799/dqkx.2019.255
      王春光, 许文良, 2019. 俯冲带壳-幔相互作用的高温高压实验: 对地幔不均一性成因的启示. 地球科学, 44(12): 4112-4118. doi: 10.3799/dqkx.2019.230
      张臻, 李三忠, 2019. 雅浦沟-弧体系构造演化过程. 海洋地质与第四纪地质, 39(5): 138-146. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201905012.htm
      张正一, 董冬冬, 张广旭, 等, 2017. 板块俯冲侵蚀雅浦岛弧的地形制约. 海洋地质与第四纪地质, 37(1): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201701006.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)

      Article views (1885) PDF downloads(154) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return