• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Wang Wei, Fu Hao, Xing Linxiao, Chai Bo, Liu Bo, Shi Xingyu, 2021. Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method. Earth Science, 46(10): 3509-3519. doi: 10.3799/dqkx.2021.005
    Citation: Wang Wei, Fu Hao, Xing Linxiao, Chai Bo, Liu Bo, Shi Xingyu, 2021. Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method. Earth Science, 46(10): 3509-3519. doi: 10.3799/dqkx.2021.005

    Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method

    doi: 10.3799/dqkx.2021.005
    • Received Date: 2020-12-18
      Available Online: 2021-11-03
    • Publish Date: 2021-11-03
    • Hydraulic fracturing is one of the main geothermal energy exploitation methods, and its fracturing effect is not only related to the basic physical and mechanical properties of the rock mass, but also closely related to the distribution of fractures, the state of in-situ stress, and the engineering parameters of fracturing. To explore the influence of the above factors of the fracture propagation behavior in the process of hydraulic fracturing, in this paper it takes the carbonatite reservoir rock mass in Jizhong depression as the research object. Based on the extended finite element method, a fracture propagation fluid-solid coupling model is established and analyzed. The influence of parameters such as horizontal stress difference, perforation azimuth angle, injection fluid displacement, and fracturing fluid viscosity on fracture propagation behavior. The results show: When a single fracture propagates, the smaller the perforation azimuth angle and the larger the injection rate, the more conducive to fracture propagation. When double cracks propagate, the horizontal stress difference increases, and the degree of crack deflection decreases. When hydraulic fractures intersect with natural fractures, the smaller horizontal stress difference is beneficial to the opening of natural fractures.

       

    • Aimene, Y.E., Nairn, J.A., 2014. Modeling Multiple Hydraulic Fractures Interacting with Natural Fractures Using the Material Point Method. SPE, Vienna. DOI: 10.2118/167801-ms
      Batchelor, C.K., Batchelor, G.K., 2000. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge.
      Chitrala, Y., Moreno, C., Sondergeld, C., et al., 2013. An Experimental Investigation into Hydraulic Fracture Propagation under Different Applied Stresses in Tight Sands Using Acoustic Emissions. Journal of Petroleum Science and Engineering, 108: 151-161. DOI: 10.1016/j.petrol.2013.01.002
      Dong, B.X., Yang, L., Li, W., et al., 2019. Physical Simulation of Fracture Initiation and Propagation in Horizontal Well Fracturing. Special Oil & Gas Reservoirs, 26(6): 151-157(in Chinese with English abstract).
      Du, Y.K., Pang, F., Chen, K., et al., 2019. Experiment of Breaking Shale Using Supercritical Carbon Dioxide Jet. Earth Science, 44(11): 3749-3756(in Chinese with English abstract).
      Gordeliy, E., Peirce, A., 2013. Implicit Level Set Schemes for Modeling Hydraulic Fractures Using the XFEM. Computer Methods in Applied Mechanics and Engineering, 266: 125-143. DOI: 10.1016/j.cma.2013.07.016
      Guo, L.L., Chen, Z.F., Luo, J.R., et al., 2011. A Review of the Extended Finite Element Method and Its Applications. Chinese Quarterly of Mechanics, 32(4): 612-625(in Chinese with English abstract).
      Heng, S., Yang, C.H., Zeng, Y.J., et al., 2014. Experimental Study on Hydraulic Fracture Geometry of Shale. Chinese Journal of Geotechnical Engineering, 36(7): 1243-1251(in Chinese with English abstract).
      Jeffrey, R.G., Kear, J., Kasperczyk, D., et al., 2015. A 2D Experimental Method with Results for Hydraulic Fractures Crossing Discontinuities. 49th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association: San Francisco, California, 28.
      Lamont, N., Jessen, F.W., 1963. The Effects of Existing Fractures in Rocks on the Extension of Hydraulic Fractures. Journal of Petroleum Technology, 15(2): 203-209. DOI: 10.2118/419-pa
      Lei, Y., 2014. Underground Hydraulic Fracturing in Soft Coal Seams Fracturing Mechanism and Application Research(Dissertation). China Coal Research Institute CCRI, Beijing(in Chinese with English abstract).
      Li, D.W., Wang, Y.X., 2015. Major Issues of Research and Development of Hot Dry Rock Geothermal Energy. Earth Science, 40(11): 1858-1869(in Chinese with English abstract).
      Li, L.X., Wang, T.J., 2005. The Extended Finite Element Method and Its Applications: A Review. Advances in Mechanics, 35(1): 5-20(in Chinese with English abstract).
      Li, S.B., Li, L., Zhang, L.G., 2014. The Numerical Simulation Analysis of Crack Propagation Law under Riverfrac Treatment Multi-Field Coupling. Journal of Petrochemical Universities, 27(1): 42-47(in Chinese with English abstract).
      Liu, L., He, S., Zhai, G.Y., et al., 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597(in Chinese with English abstract).
      Lou, Y., Zhang, G.Q., 2019. Experimental Analysis of Fracturing Fluid Viscosity on Cyclic Hydraulic Fracturing. Rock and Soil Mechanics, 40(Suppl. 1): 109-118(in Chinese with English abstract).
      Michael, J.E., 2002. Measures to Increase Oil Reservoir Production (Zhang, B.P., etc., Translate). Petroleum Industry Press, Beijing (in Chinese).
      Mohammadi, S., 2007. Extended Finite Element Method: For Fracture Analysis of Structures. XFEM Fracture Analysis of Composites, 45(22): 5675-5687.
      Olson, J.E., Taleghani, A.D., 2009. Modeling Simultaneous Growth of Multiple Hydraulic Fractures and Their Interaction with Natural Fractures. SPE, The Woodlands, Texas. DOI: 10.2118/119739-ms
      Pan, L.H., Zhang, S.C., Zhang, J., et al., 2012. The Analysis of Hydraulic Fracture Propagation in Fracture-Cavity Carbonate Reservoirs. Science Technology and Engineering, 12(12): 2816-2819, 2824(in Chinese with English abstract).
      Réthoré, J., Gravouil, A., Combescure, A., 2005. An Energy-Conserving Scheme for Dynamic Crack Growth Using the Extended Finite Element Method. International Journal for Numerical Methods in Engineering, 63(5): 631-659. DOI: 10.1002/nme.1283
      Shao, C.Y., Pan, P.Z., Zhao, D.C., et al., 2020. Effect of Pumping Rate on Hydraulic Fracturing Breakdown Pressure and Pressurization Rate. Rock and Soil Mechanics, 41(7): 2411-2421, 2484(in Chinese with English abstract).
      Su, L.X., 2008. Numerical Simulation of Hydraulic Fracturing of Rock Mass with Single Fracture Using Meshless Method(Dissertation). Kunming University of Science and Technology, Kunming(in Chinese with English abstract).
      Tomac, I., Sauter, M., 2018. A Review on Challenges in the Assessment of Geomechanical Rock Performance for Deep Geothermal Reservoir Development. Renewable and Sustainable Energy Reviews, 82: 3972-3980. DOI: 10.1016/j.rser.2017.10.076
      Unger, J.F., Eckardt, S., Könke, C., 2007. Modelling of Cohesive Crack Growth in Concrete Structures with the Extended Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 196(41-44): 4087-4100. DOI: 10.1016/j.cma.2007.03.023
      Wei, Y.L., Yang, C.H., Guo, Y.T., et al., 2016. Experimental Study on Hydraulic Fracture Geometry of Tight Sandstone from Xujiahe Group. Chinese Journal of Rock Mechanics and Engineering, 35(Suppl. 1): 2720-2731(in Chinese with English abstract).
      Yu, J.Y., Shen, F., Gu, Q.H., et al., 2011. Influence of Perforation Parameters on Hydraulic Fracturing of Fracture Pressure in Horizontal Well. Petroleum Geology and Recovery Efficiency, 18(1): 105-107, 110, 118(in Chinese with English abstract).
      Rutqvist, J., Stephansson, O., 1996. A Cyclic Hydraulic Jacking Test to Determine the In Situ Stress Normal to a Fracture. International Journal of Rock Mechanics and Mining Sciences Geomechanics Abstracts, 33, 695-711. doi: 10.1016/0148-9062(96)00013-7
      Zangeneh, N., Eberhardt, E., Bustin, R.M., 2012. Application of the Distinct-Element Method to Investigate the Influence of Natural Fractures and In-Situ Stresses on Hydrofrac Propagation. In: ARMA 12-331, the 46th US Rock Mechanics Symposium, Chicago, IL, USA.
      Zhang, G.M., Liu, H., Zhang, J., et al., 2010. Three-Dimensional Finite Element Simulation and Parametric Study for Horizontal Well Hydraulic Fracture. Journal of Petroleum Science and Engineering, 72(3-4): 310-317. DOI: 10.1016/j.petrol.2010.03.032
      Zhang, G.M., Liu, H., Zhang, J., et al., 2010. Mathematical Model and Nonlinear Finite Element Equation for Reservoir Fluid-Solid Coupling. Rock and Soil Mechanics, 31(5): 1657-1662(in Chinese with English abstract).
      Zhang, S.C., Sun, K.M., 2019. Hydraulic Fracturing Crack Propagation under Various Reservoir Heterogeneity and Anisotropy. Special Oil & Gas Reservoirs, 26(2): 96-100(in Chinese with English abstract).
      Zhao, Y.Z., Qu, L.Z., Wang, X.Z., et al., 2007. Simulation Experiment on Prolongation Law of Hydraulic Fracture for Different Lithologic Formations. Journal of China University of Petroleum (Edition of Natural Science), 31(3): 63-66(in Chinese with English abstract).
      Zhou, J., Chen, M., Jin, Y., et al., 2007. Experimental Study on Propagation Mechanism of Hydraulic Fracture in Naturally Fractured Reservoir. Acta Petrolei Sinica, 28(5): 109-113(in Chinese with English abstract).
      Zhou, J., Chen, M., Jin, Y., et al., 2008. Experiment of Propagation Mechanism of Hydraulic Fracture in Multi-Fracture Reservoir. Journal of China University of Petroleum (Edition of Natural Science), 32(4): 51-54, 59(in Chinese with English abstract).
      Zubkov, V. V., Koshelev, V. F., Lin'kov, A. M., 2007. Numerical Modeling of Hydraulic Fracture Initiation and Development. Journal of Mining Science, 43(1): 40-56. DOI: 10.1007/s10913-007-0006-6
      董丙响, 杨柳, 李伟, 等, 2019. 水平井压裂裂缝起裂及延伸规律模拟实验研究. 特种油气藏, 26(6): 151-157. doi: 10.3969/j.issn.1006-6535.2019.06.028
      杜玉昆, 庞飞, 陈科, 等, 2019. 超临界二氧化碳喷射破碎页岩试验. 地球科学, 44(11): 3749-3756. doi: 10.3799/dqkx.2019.221
      郭历伦, 陈忠富, 罗景润, 等, 2011. 扩展有限元方法及应用综述. 力学季刊, 32(4): 612-625. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201104019.htm
      衡帅, 杨春和, 曾义金, 等, 2014. 页岩水力压裂裂缝形态的试验研究. 岩土工程学报, 36(7): 1243-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201407010.htm
      雷毅, 2014. 松软煤层井下水力压裂致裂机理及应用研究(博士学位论文). 北京: 煤炭科学研究总院.
      李德威, 王焰新, 2015. 干热岩地热能研究与开发的若干重大问题. 地球科学, 40(11): 1858-1869. doi: 10.3799/dqkx.2015.166
      李录贤, 王铁军, 2005. 扩展有限元法(XFEM)及其应用. 力学进展, 35(1): 5-20. doi: 10.3321/j.issn:1000-0992.2005.01.002
      李士斌, 李磊, 张立刚, 2014. 清水压裂多场耦合下裂缝扩展规律数值模拟分析. 石油化工高等学校学报, 27(1): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHX201401008.htm
      刘力, 何生, 翟刚毅, 等, 2019. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存. 地球科学, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142
      楼烨, 张广清, 2019. 压裂液黏度对循环水力压裂影响的试验研究. 岩土力学, 40(增刊1): 109-118. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1017.htm
      Michael, J.E., 2002. 油藏增产措施(张保平等, 译). 北京: 石油工业出版社.
      潘林华, 张士诚, 张劲, 等, 2012. 缝洞型碳酸盐岩裂缝扩展分析. 科学技术与工程, 12(12): 2816-2819, 2824. doi: 10.3969/j.issn.1671-1815.2012.12.009
      邵长跃, 潘鹏志, 赵德才, 等, 2020. 流量对水力压裂破裂压力和增压率的影响研究. 岩土力学, 41(7): 2411-2421, 2484. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007028.htm
      苏利勋, 2008. 无网格法数值模拟岩体单裂隙水力劈裂(硕士学位论文). 昆明: 昆明理工大学.
      魏元龙, 杨春和, 郭印同, 等, 2016. 须家河组致密砂岩水力压裂裂缝形态的试验研究. 岩石力学与工程学报, 35(增刊1): 2720-2731. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1016.htm
      虞建业, 沈飞, 顾庆宏, 等, 2011. 水平井射孔参数对压裂起裂压力的影响. 油气地质与采收率, 18(1): 105-107, 110, 118. doi: 10.3969/j.issn.1009-9603.2011.01.029
      张广明, 刘合, 张劲, 等, 2010. 储层流固耦合的数学模型和非线性有限元方程. 岩土力学, 31(5): 1657-1662. doi: 10.3969/j.issn.1000-7598.2010.05.053
      张树翠, 孙可明, 2019. 储层非均质性和各向异性对水力压裂裂纹扩展的影响. 特种油气藏, 26(2): 96-100. doi: 10.3969/j.issn.1006-6535.2019.02.017
      赵益忠, 曲连忠, 王幸尊, 等, 2007. 不同岩性地层水力压裂裂缝扩展规律的模拟实验. 中国石油大学学报(自然科学版), 31(3): 63-66. doi: 10.3321/j.issn:1000-5870.2007.03.013
      周健, 陈勉, 金衍, 等, 2007. 裂缝性储层水力裂缝扩展机理试验研究. 石油学报, 28(5): 109-113. doi: 10.3321/j.issn:0253-2697.2007.05.020
      周健, 陈勉, 金衍, 等, 2008. 多裂缝储层水力裂缝扩展机理试验. 中国石油大学学报(自然科学版), 32(4): 51-54, 59. doi: 10.3321/j.issn:1673-5005.2008.04.011
    • Relative Articles

    • Cited by

      Periodical cited type(15)

      1. 崔泽飞,朱守彪. 地震过程中新生断层破裂的扩展有限单元法(XFEM)模拟. 地球物理学报. 2025(02): 564-577 .
      2. 郝明,高彦彦,王青,何鹏,张华. 证据理论融合多视角遥感信息的地热异常探测. 地球科学. 2024(01): 347-358 . 本站查看
      3. 郑春山,韩飞林,江丙友,薛生,李国富,刘帅丽. 煤体原位水力压注多尺度孔裂隙演化及渗透率跃变规律. 中国矿业大学学报. 2024(04): 710-725 .
      4. 黄鸿蓝,宋健,杨蕴,吴剑锋,刘媛媛,吴吉春. 三维裂隙网络中典型重金属污染物反应运移数值模拟. 地球科学. 2024(08): 2879-2890 . 本站查看
      5. 李嘉龙,康凤新,白通,张平平,李振函,赵强. 砂岩热储温度场对回灌参数的响应机理与规律. 地球科学. 2024(09): 3318-3333 . 本站查看
      6. 曹志成,陈秋,崔俊艳,解经宇,张卫强,蒋国盛. 基于扩展有限元的现场尺度水力裂缝扩展机制模拟研究. 钻探工程. 2024(05): 85-92 .
      7. 刘邹炜,杨明合,黄琳,廖开瑞,张俊. 废弃井地热能开发工艺与数值模拟研究进展. 太阳能学报. 2023(03): 311-318 .
      8. 姚迎涛,曾联波,张航,张洁伟,管聪,梁栋. 川东北黄龙场-七里北地区飞仙关组碳酸盐岩储层裂缝发育规律. 地球科学. 2023(07): 2643-2651 . 本站查看
      9. 巩磊,程宇琪,高帅,高志勇,冯佳睿,王洪涛,宿晓岑,卢崎,王杰. 库车前陆盆地东部下侏罗统致密砂岩储层裂缝连通性表征及其主控因素. 地球科学. 2023(07): 2475-2488 . 本站查看
      10. 赵腾,车小花,乔文孝,程路,卢俊强,门百永. 三维散射声波远探测测井裂缝评价的物理模拟. 地球科学. 2023(07): 2703-2717 . 本站查看
      11. 曹东升,曾联波,黄诚,韩俊,巩磊,宋逸辰,姚迎涛,董少群. 多尺度岩石力学层对断层和裂缝发育的控制作用. 地球科学. 2023(07): 2535-2556 . 本站查看
      12. 徐珂,张辉,鞠玮,尹国庆,王海应,王志民,王朝辉,李超,袁芳,赵崴. 库车坳陷博孜X区块超深储层有效裂缝分布规律及对天然气产能的影响. 地球科学. 2023(07): 2489-2505 . 本站查看
      13. 郭伟,曹宏瑞,訾艳阳,尉询楷. 滚动轴承接触疲劳裂纹建模与扩展规律研究. 中国机械工程. 2023(16): 1891-1899 .
      14. 姚荣文,张云辉,赵晓彦,王鹰,徐正宣,常兴旺,多吉. 岩体裂隙三维可视化新方法及其应用. 地球科学. 2022(09): 3463-3476 . 本站查看
      15. 陈劭颖,王伟,杨清纯,张立松. 干热岩储层多簇缝网压裂热流固顺序耦合模型研究. 油气藏评价与开发. 2022(06): 869-876 .

      Other cited types(9)

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-060102030405060
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 35.8 %FULLTEXT: 35.8 %META: 61.0 %META: 61.0 %PDF: 3.2 %PDF: 3.2 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.5 %其他: 7.5 %其他: 0.0 %其他: 0.0 %Australia: 0.1 %Australia: 0.1 %China: 0.5 %China: 0.5 %India: 0.2 %India: 0.2 %Japan: 0.0 %Japan: 0.0 %Norway: 0.2 %Norway: 0.2 %United States: 0.1 %United States: 0.1 %[]: 0.0 %[]: 0.0 %三亚: 0.1 %三亚: 0.1 %上海: 0.5 %上海: 0.5 %东莞: 0.1 %东莞: 0.1 %东营: 0.0 %东营: 0.0 %临汾: 0.3 %临汾: 0.3 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %伊犁哈萨克自治州: 0.3 %伊犁哈萨克自治州: 0.3 %保定: 0.1 %保定: 0.1 %克拉玛依: 0.0 %克拉玛依: 0.0 %兰州: 0.1 %兰州: 0.1 %北京: 21.9 %北京: 21.9 %十堰: 0.1 %十堰: 0.1 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 0.3 %南京: 0.3 %南昌: 0.2 %南昌: 0.2 %南通: 0.0 %南通: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.1 %合肥: 0.1 %吕梁: 0.1 %吕梁: 0.1 %呼和浩特: 0.3 %呼和浩特: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.1 %嘉兴: 0.1 %大庆: 0.1 %大庆: 0.1 %天津: 0.8 %天津: 0.8 %太原: 0.1 %太原: 0.1 %娄底: 0.1 %娄底: 0.1 %宁波: 0.0 %宁波: 0.0 %安康: 0.3 %安康: 0.3 %宜昌: 0.1 %宜昌: 0.1 %宣城: 0.2 %宣城: 0.2 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %巴音郭楞蒙古自治州: 0.0 %巴音郭楞蒙古自治州: 0.0 %布加勒斯特: 0.1 %布加勒斯特: 0.1 %常州: 0.0 %常州: 0.0 %平顶山: 0.0 %平顶山: 0.0 %广州: 0.0 %广州: 0.0 %张家口: 1.0 %张家口: 1.0 %徐州: 0.2 %徐州: 0.2 %成都: 1.3 %成都: 1.3 %扬州: 0.5 %扬州: 0.5 %承德: 0.1 %承德: 0.1 %昆明: 0.2 %昆明: 0.2 %晋城: 0.1 %晋城: 0.1 %杭州: 1.2 %杭州: 1.2 %榆林: 0.1 %榆林: 0.1 %武汉: 3.2 %武汉: 3.2 %沈阳: 0.0 %沈阳: 0.0 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.8 %济南: 0.8 %温州: 0.2 %温州: 0.2 %湖州: 0.3 %湖州: 0.3 %漯河: 1.3 %漯河: 1.3 %濮阳: 0.1 %濮阳: 0.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.0 %秦皇岛: 0.0 %芒廷维尤: 17.8 %芒廷维尤: 17.8 %莫斯科: 0.6 %莫斯科: 0.6 %衢州: 0.5 %衢州: 0.5 %襄阳: 0.0 %襄阳: 0.0 %西宁: 27.2 %西宁: 27.2 %西安: 0.3 %西安: 0.3 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.1 %赣州: 0.1 %运城: 1.0 %运城: 1.0 %遂宁: 0.0 %遂宁: 0.0 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.4 %郑州: 0.4 %重庆: 0.4 %重庆: 0.4 %金华: 0.1 %金华: 0.1 %长沙: 1.4 %长沙: 1.4 %长治: 0.3 %长治: 0.3 %阿什本: 0.0 %阿什本: 0.0 %阿勒泰: 0.1 %阿勒泰: 0.1 %雅安: 0.0 %雅安: 0.0 %青岛: 0.5 %青岛: 0.5 %其他其他AustraliaChinaIndiaJapanNorwayUnited States[]三亚上海东莞东营临汾乌鲁木齐伊犁哈萨克自治州保定克拉玛依兰州北京十堰华盛顿州南京南昌南通台北台州合肥吕梁呼和浩特哈尔滨哥伦布嘉兴大庆天津太原娄底宁波安康宜昌宣城巴音郭楞巴音郭楞蒙古自治州布加勒斯特常州平顶山广州张家口徐州成都扬州承德昆明晋城杭州榆林武汉沈阳洛阳济南温州湖州漯河濮阳烟台石家庄福州秦皇岛芒廷维尤莫斯科衢州襄阳西宁西安贵阳赣州运城遂宁邯郸郑州重庆金华长沙长治阿什本阿勒泰雅安青岛

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(1)

      Article views (1259) PDF downloads(68) Cited by(24)
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return