• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 2
    Feb.  2022
    Turn off MathJax
    Article Contents
    Qiu Ju, Jiang Yongjun, Lv Tongru, Mao Yang, Wu Ze, Ma Lina, Wang Qirong, Zhang Caiyun, 2022. Response of Stable Isotopes of Hydrogen and Oxygen in Soil Water and Groundwater to Tunnel Construction in Typical Karst trough Valley. Earth Science, 47(2): 717-728. doi: 10.3799/dqkx.2021.008
    Citation: Qiu Ju, Jiang Yongjun, Lv Tongru, Mao Yang, Wu Ze, Ma Lina, Wang Qirong, Zhang Caiyun, 2022. Response of Stable Isotopes of Hydrogen and Oxygen in Soil Water and Groundwater to Tunnel Construction in Typical Karst trough Valley. Earth Science, 47(2): 717-728. doi: 10.3799/dqkx.2021.008

    Response of Stable Isotopes of Hydrogen and Oxygen in Soil Water and Groundwater to Tunnel Construction in Typical Karst trough Valley

    doi: 10.3799/dqkx.2021.008
    • Received Date: 2021-11-01
    • Publish Date: 2022-02-25
    • The construction of the tunnel caused changes in the groundwater flow field, which seriously affected the process of regional water migration. Taking the karst trough of Zhongliang Mountain in Chongqing as an example, we collected precipitation, soil water, groundwater and tunnel drainage from April 2017 to April 2019. This study used stable hydrogen and oxygen isotopes to analyze the soil water and groundwater migration processes in the tunnel-affected zone and non-tunnel-affected zone, and explored the impact of tunnel construction on it.The results showed that the change of δ2H and δ18O of soil water in the tunnel-affected area was greater than that of the tunnel-affected area, and the change of groundwater δ2H and δ18O was more stable than that of the non-tunnel-affected area.Compared with the soil water and groundwater in the non-tunnel-affected area, the δ2H and δ18O of the shallow soil water in the tunnel-affected area were heavier in summer, the δ2H and δ18O of deep soil were heavier in autumn, the δ2H and δ18O of shallow karst spring water were basically heavier in all seasons, and the underground river water was δ2H and δ18O tends to be heavier in winter, and the δ2H and δ18O of water bodies in other seasons were basically lighter. The difference of meantransit time and young water fraction between the tunnel-affected zone and the non-tunnel-affected zone gradually decreased from soil water to groundwater.The meantransit time of soil water in the tunnel-affected area was 25.4 days shorter than that in the non-tunnel-affected area, the young water fraction was 13.5% higher, the meantransit time of groundwater was 16.1 days less, and the young water fraction was 3.4% higher.To sum up, the tunnel construction accelerated the water movement speed in the tunnel-affected zone to a certain extent, resulting in the reduction of retained water in the soil layer and the weakening of water mixing.

       

    • loading
    • Bakalowicz, M., 2005. Karst Groundwater: a Challenge for New Resources. Hydrogeology Journal, 13(1): 148-160. https://doi.org/10.1007/s10040a-004-0402-9
      Cao, J.H., Yuan, D.X., Tong, L.Q., et al. 2015. An Overview of Karst Ecosystem in Southwest China: Current State and Future Management. Journal of Resources and Ecology, 6(4): 247-256. https://doi.org/10.5814/j.issn.1674-764x.2015.04.008
      Cao, L., Shen, J. M., Nie, Z. L., et al., 2020. Stable Isotopic Characteristics of Precipitation and Moisture Recycling in the Badain Jaran Desert. Earth Science, 46(8): 2973-2983(in Chinese with English abstract).
      Dewalle, D. R., Edwards, P J., Swistock, B. R., et al., 1997. Seasonal Isotope Hydrology of Three Appala China Forest Catchments. Hydrological Processes, 11(15): 1895-1906. https://doi.org/10.1002/(SICI)1099-1085(199712)11:15<1895::AID-HYP538>3.0.CO;2-#
      Duan, S. H., Jang, Y. J., Zhang, Y.Z. , et al., 2019. Sources of Nitrate in Groundwater and Its Environmental Effects in Karst Trough Valleys: a Case Study of an Underground River System in the Longfeng trough Valley, Chongging. Environmental Science, 40(4): 1715-1725(in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/31087912
      Gat, J. R., 1996. Oxygen and Hydrogen Isotopes in the Hydrologic Cycle. Annual Review of Earth and Planetary Sciences, 24(1): 225-262. https://doi. org/10.1146/annurev.earth.24.1.225 doi: 10.1146/annurev.earth.24.1.225
      Gu, D., Zhang, Z., Mallik, A., et al., 2015. Seasonal Water Use Strategy of Cyclobalanopsis Glauca in a Karst Area of Southern China. Environmental Earth Sciences, 74(2): 1007-1014. https://doi.org/10.1007/s12665-014-3817-1
      Hu, K., Chen, H., Nie, Y., et al., 2015. Seasonal Recharge and Mean Residence Times of Soil and Epikarst Water in a Small Karst Catchment of Southwest China. Scientific Reports, 5(1): 12-27. https://doi.org/10.1038/srep10215
      Hu, Y. B., Xiao, W., Qian, Y. F. , et al., 2019. Effects of Water Vapor Source and Local Evaporation on the Stable Hydrogen and Oxygen Isotopic Compositions of Precipitation. Environmental Science, 40(2): 573-581(in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/30628319/
      Jasechko, S., 2019. Global Isotope Hydrogeology: Review. Reviews of Geophysics, 57(3): 835-965. https://doi.org/10.1029/2018RG000627
      Kirchner, J, W., 2016a. Aggregation in Environmental Systems: Part 1: Seasonal Tracer Cycles Quantify Young Water Fractions, But not Mean Transit Times, in Spatially Heterogeneous Catchments. Hydrology and Earth System Sciences, 20(1): 279-297. https://doi.org/10.5194/hess-20-279-2016
      Kirchner, J. W., 2016b. Aggregation in Environmental Systems: Part 2: Catchment Mean Transit Times and Young Water Fractions under Hydrologic Nonstationarity. Hydrology and Earth System Sciences, 20(1): 299-328. https://doi.org/10.5194/hess-20-299-2016
      Liu, D., 2001. Research on Application of Isotope and Hydrochemical Information in Groundwater Environment of Long Tunnel(Dissertation). Southwest Jiaotong University, Sichuan(in Chinese).
      Luo, W. J., Wang, S. J., 2008. The Signal Transmission of δ18O in Atmospheric Precipitation-Soil Water-Drop and Its Significance at Guizhou Liangfeng Cave. Chinese Science Bulletin, 53(17): 2071-2076(in Chinese with English abstract). doi: 10.1360/csb2008-53-17-2071
      Li, T. Y., Li, C. H., Sheng, C. Z., et al., 2010. Study on the δD and δ18O Characteristics of Meteoric Precipitation during 2006-2008 in Chonging, China. Advances in Water Science, 21(6): 757-764(in Chinese with English abstract).
      Liu, W., Wang, S. J., Luo, W. J., 2011. The Response of Epikarst Spring to Precipitation and Its Implications in Karst Peak-Cluster Region of Libo County, Guizhou Province, China. Geochimica, 40(5): 487-496(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201105009.htm
      Liu, M.J., Wang, Y., Zhang, Y. H., et al., 2015. Variation Characteristics of Stable Isotopes in Different Water Bodies in Southwestern China Monsoon Area: a Case Study of Beibei District, Chongqing. Carsologica Sinica, 34(5): 486-494(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR201505009.htm
      Liao, Y. P., 2018. Study on Evolution Law of Negative Effects of Groundwater Environment on Tunnel Engineering Around Karst Mountain Area of Chongqing(Dissertation). Chongqing Jiaotong University, Chongqing(in Chinese).
      Lv, Y. X., Jang, Y. J., Wang, Z. , et al., 2020. Review on the Hydrology and the Ecological and Environmental Effects of Tunnel Construction in the Karst Valley of Southwest China. Acta Ecologica Sinica, 40(6): 1851-1864(in Chinese with English abstract). http://www.researchgate.net/publication/343207877_Review_on_the_hydrology_and_the_ecological_and_environmental_effects_of_tunnel_construction_in_the_karst_valley_of_Southwest_China
      Maoszewski, P., Zuber, A., 1982. Determining the Turnover Ttime of Groundwater Systems with the Aid of Environmental Tracers. 1. Models and Their Applicability. Journal of Hydrology, 57(3-4): 207-231. https://doi.org/10.1016/0022-1694(82)90147-0
      Maoszewski, P., Rauert, W., Stichler, W., et al., 1983. Application of Flow Models in an Alpine Catchment Area Using Tritium and Deuterium Data. Journal of Hydrology, 66(1-4): 319-330. https://doi.org/10.1016/0022-1694(83)90193-2
      Maréchal, J. C., Etcheverry, D., 2003. The Use of 3H and 18O Tracers to Characterize Water Inflows in Alpine Tunnels. Applied Geochemistry, 18(3): 339-351. https://doi.org/10.1016/S0883-2927(02)00101-4
      McGuire, K. J., McDonnell, J. J., 2006. A Review and Evaluation of Catchment Transit Time Modeling. Journal of Hydrology, 330(3-4): 543-563. https://doi.org/10.1016/j.jhydrol.2006.04.020
      Meng, Y. C., Liu, G. D., 2010. Effect of Below-Cloud Secondary Evaporation on the Stable Isotopes in Precipitation over the Yangize River Basin. Advances in Water Science, 21(3): 327-334(in Chinese with English abstract). http://www.cqvip.com/QK/97113X/20103/34116302.html
      Posmentier, E. S., Feng, X., Zhao, M., 2004. Seasonal Variations of Precipitation δ18O in Eastern Asia. Journal of Geophysical Research Atmospheres, 109(D23). https://doi.org/10.1029/2004JD004510
      Pu, J. B., 2013. Hydrogen and Oxygen Isotope Geochemistry of Karst Groundwater in Chongqing. Acta Geoscientica Sinica, 34(6): 713-722(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201306009.htm
      Peng, X. Y., 2019. Influence of Tunnel Construction on Soil Quality in Karst Valley of Zhongliang Mountain Chongqing(Dissertation). Southwest University, Chongqing (in Chinese).
      Qin, C., 2017. Application of Hydrological Monitoring Technology to Construction of Karst Tunnels. Tunnel Construction, 37(7): 878-884(in Chinese with English abstract).
      Ranfagni, L., Gherardi, F., Rossi, S., 2014. Chemical and Isotope Composition of Waters from Firenzuola Railway Tunnel, Italy. Springer International Publishing, Cham, 971-974. https://doi.org/10.1007/978-3-319-09060-3-176
      Rusjan, S., Sapač, K., Petrič, M., et al. 2019. Identifying the Hydrological Behavior of a Complex Karst System Using Stable Isotopes. Journal of Hydrology, 577: 123956. https://doi.org/10.1016/j.jhydrol.2019.123956
      Song, X. Q., Peng, Q., Duan, Q. s., et al., 2019. Hydrochemistry Characteristics and Origin of Geothermal Water in Northeastern Guizhou. Earth Science, 44(9): 2874-2886. (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909006.htm
      Trombulak, S. C., Frissell, C. A., 2000. Review of Ecological Effects of Roads on Terrestrial and Aquatic Communities. Conservation Biology, 14(1). https://doi.org/10.1046/j.1523-1739.2000.99084.x
      Tomonaga, Y., Marzocchi, R., Pera, S., et al., 2017. Using Noble-Gas and Stable-Isotope Data to Determine Groundwater Origin and Flow Regimes: Application to the Ceneri Base Tunnel (Switzerland). Journal of Hydrology, 545: 395-409. https://doi.org/10.1016/j.jhydrol.2016.11.043
      Vincenzi, V., Gargini, A., Goldscheide, r N., 2009. Using Tracer Tests and Hydrological Observations to Evaluate Effects of Tunnel Drainage on Groundwater and Surface Waters in the Northern Apennines (Italy). Hydrogeology Journal, 17(1): 135-150. https://doi.org/10.1007/s10040-008-0371-5
      Wu, W., Jang, Y. J., Jia, Y.N., et al., 2018. Temporal and Spatial Distribution of the Soil Water δD and δ18O in a Typical Karst Valley: a Case Study of the Zhongliang Mountain, Chongging City. Environmental Science, 39(12): 5418-5427(in Chinese with English abstract). http://www.researchgate.net/publication/330512492_Temporal_and_Spatial_Distribution_of_the_Soil_Water_dD_and_d18O_in_a_Typical_Karst_Valley_A_Case_Study_of_the_Zhongliang_Mountain_Chongqing_City
      Wang. R., Liu, Z.F., 2020. Stable Isotope Evidence for Recent Global Warming Hiatus. Journal of Earth Science, 31(2): 419-424. https://doi.org/10.1007/s12583-019-1239-4
      Wang, Q. F., Zheng, W., Xu, H., et al., 2018. Influence of Groundwater Loss Induced by Karst Tunnel Construction on Growth of Surrounding Vegetation and Its Countermeasures. Tunnel Construction, 38(6): 915-923(in Chinese with English abstract). http://www.researchgate.net/publication/326572595_Influence_of_Groundwater_Loss_Induced_by_Karst_Tunnel_Construction_on_Growth_of_Surrounding_Vegetation_and_Its_Countermeasures
      Yuan, D. X., 2000. Aspects on the New Round Land and Resources Survey in Karst Rock Desertification Areas of South China. Carsologica Sinica, 19(2): 103-108(in Chinese). http://www.researchgate.net/publication/291700885_Aspects_on_the_new_round_land_and_resources_survey_in_karst_rock_desertification_areas_of_south_China
      曹乐, 申建梅, 聂振龙, 等, 2020. 巴丹吉林沙漠降水稳定同位素特征与水汽再循环. 地球科学, 46(8): 2973-2983. doi: 10.3799/dqkx.2020.273
      段世辉, 蒋勇军, 张远瞩, 等, 2019. 岩溶槽谷区地下河硝酸盐来源及其环境效应: 以重庆龙凤槽谷地下河系统为例. 环境科学, 40(4): 1715-1725. doi: 10.3969/j.issn.1000-6923.2019.04.045
      胡勇博, 肖薇, 钱雨妃, 等, 2019. 水汽源地和局地蒸发对大气降水氢氧稳定同位素组分的影响. 环境科学, 40(2): 573-581. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201902009.htm
      刘丹, 2001. 长大隧道地下水环境中同位素及水化学信息的应用研究(博士毕业论文). 四川: 西南交通大学.
      罗维均, 王世杰, 2008. 贵州凉风洞大气降水-土壤水-滴水的δ18O信号传递及其意义. 科学通报, (17): 2071-2076. doi: 10.3321/j.issn:0023-074X.2008.17.012
      李廷勇, 李红春, 沈川洲, 等, 2010.2006~2008年重庆大气降水δD和δ18O特征初步分析. 水科学进展, 21(6): 757-764. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201006004.htm
      刘伟, 王世杰, 罗维均, 2011. 贵州荔波岩溶峰丛区表层岩溶泉对大气降雨的响应及其指示意义. 地球化学, 40(5): 487-496. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201105009.htm
      刘梦娇, 王勇, 张耀华, 等, 2015. 中国西南季风区不同水体稳定同位素特征分析——以重庆市北碚区为例. 中国岩溶, 34(5): 486-494. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201505009.htm
      廖云平, 2018. 重庆岩溶山区隧道工程地下水环境负效应演化规律研究(硕士毕业论文). 重庆: 重庆交通大学.
      吕玉香, 蒋勇军, 王正雄, 等, 2020. 西南岩溶槽谷区隧道建设的水文生态环境效应研究进展. 生态学报, 40(6): 1851-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202006002.htm
      孟玉川, 刘国东, 2010. 长江流域降水稳定同位素的云下二次蒸发效应. 水科学进展, 21(3): 327-334. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201003007.htm
      蒲俊兵, 2013. 重庆岩溶地下水氢氧稳定同位素地球化学特征. 地球学报, 34(6): 713-722. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201306009.htm
      彭学义, 2019. 重庆市中梁山岩溶槽谷区隧道建设对土壤质量的影响(硕士毕业论文). 重庆: 西南大学.
      秦成, 2017. 水文监测技术在岩溶隧道施工中的应用. 隧道建设, 37(7): 878-884. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201707018.htm
      宋小庆, 彭钦, 段启杉, 等, 2019. 黔东北地区地热水化学特征及起源. 地球科学, 44(9): 2874-2886. doi: 10.3799/dqkx.2019.146
      吴韦, 蒋勇军, 贾亚男, 等, 2018. 典型岩溶槽谷区土壤水δD和δ18O时空分布特征: 以重庆市中梁山岩溶槽谷为例. 环境科学, 39(12): 5418-5427. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201812015.htm
      王芳其, 郑炜, 徐华, 等, 2018. 岩溶山区隧道地下水漏失对植物生长的影响分析及对策. 隧道建设, 038(6): 915-923. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201806006.htm
      袁道先, 2000. 对南方岩溶石山地区地下水资源及生态环境地质调查的一些意见. 中国岩溶, (2): 103-108. doi: 10.3969/j.issn.1001-4810.2000.02.001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(3)

      Article views (1139) PDF downloads(55) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return