Citation: | Gao Yangdong, Zhang Xiangtao, Li Zhigao, Ding Lin, Li Xiaoping, 2021. Variability in Sequence Stratigraphic Architectures of Lower-Middle Miocene Pearl River Delta, Northern Enping Sag, Pearl River Mouth Basin: Implications for Lithological Trap Development. Earth Science, 46(5): 1758-1770. doi: 10.3799/dqkx.2021.011 |
Bourget, J., Bruce Ainsworth, R., Thompson, S., 2014. Seismic Stratigraphy and Geomorphology of a Tide or Wave Dominated Shelf-Edge Delta (NW Australia): Process-Based Classification from 3D Seismic Attributes and Implications for the Prediction of Deep-Water Sands. Marine and Petroleum Geology, 57: 359-384. doi: 10.1016/j.marpetgeo.2014.05.021
|
Catuneanu, O., 2006. Principles of Sequence Stratigraphy. Elsevier, Amsterdam, 375.
|
Catuneanu, O., Abreu, V., Bhattacharya, J.P., et al., 2009. Towards the Standardization of Sequence Stratigraphy. Earth-Science Review, 92: 1-33. doi: 10.1016/j.earscirev.2008.10.003
|
Catuneanu, O., Zecchin, M., 2013. High-Resolution Sequence Stratigraphy of Clastic Shelves Ⅱ: Controls on Sequence Development. Marine and Petroleum Geology, 39: 26-38. doi: 10.1016/j.marpetgeo.2012.08.010
|
Darmadi, Y., Willis, B. J., Dorobek, S. L., 2007. Three-Dimensional Seismic Architecture of Fluvial Sequences on the Low-Gradient Sunda Shelf, Offshore Indonesia. Journal of Sedimentary Research, 77(3-4): 225-238. http://adsabs.harvard.edu/abs/2007JSedR..77..225D
|
Embry, A.F., 2009. Practical Sequence Stratigraphy. Canadian Society of Petroleum Geologists, Calgary, 79.
|
Ethridge, F.G., Schumm, S.A., 2007. Fluvial Seismic Geomorphology: A View from the Surface. Geological Society, London, Special Publications, 277(1): 205-222. doi: 10.1144/GSL.SP.2007.277.01.12
|
Gong, L., Zhu, H.T., Shu, Y., et al., 2014. Distribution of Middle-Deep Lacustrine Source Rocks within Sequence Stratigraphic Framework of Wenchang Formation in Enping Depression, the Pearl River Mouth Basin. Earth Science, 39(5): 546-556 (in Chinese with English abstract).
|
Haq, B. U., Hardenbol, J., Vail, P. R., 1987. Chronology of Fluctuating Sea Levels since the Triassic. Science, 235(4793): 1156-1167. doi: 10.1126/science.235.4793.1156
|
He, M., Zhu, W.L., Wu, Z., et al., 2019. Neotectonic Movement Characteristics and Hydrocarbon Accumulation of the Pearl River Mouth Basin. China Offshore Oil and Gas, 31(5): 9-20 (in Chinese with English abstract).
|
He, M., Zhuo, H., Chen, W., et al., 2017. Sequence Stratigraphy and Depositional Architecture of the Pearl River Delta System, Northern South China Sea: An Interactive Response to Sea Level, Tectonics and Paleoceanography. Marine and Petroleum Geology, 84: 76-101. doi: 10.1016/j.marpetgeo.2017.03.022
|
Jervey, M.T., 1988. Quantitative Geological Modeling of Siliciclastic Rock Sequences and their Seismic Expression. SEPM Special Publication, 42: 47-69.
|
Jones, G.E., Hodgson, D.M., Flint, S.S., 2015. Lateral Variability in Clinoform Trajectory, Process Regime, and Sediment Dispersal Patterns beyond the Shelf-Edge Rollover in Exhumed Basin Margin-Scale Clinothems. Basin Research, 27: 657-680. doi: 10.1111/bre.12092
|
Liang, W., Li, X.P., 2020. Lithological Exploration and Potential in Mixed Siliciclastic-Carbonate Depositional Area of Eastern Pearl River Mouth Basin. Earth Science, 45(10): 3870-3884 (in Chinese with English abstract).
|
Madof, A. S., Harris, A. D., Connell, S. D., 2016. Nearshore Along-Strike Variability: Is the Concept of the Systems Tract Unhinged?. Geology, 44 (4): 315-318. https://doi.org/10.1130/G37613.1
|
Miall, A. D., 2002. Architecture and Sequence Stratigraphy of Pleistocene Fluvial Systems in the Malay Basin, Based on Seismic Time-Slice Analysis. AAPG Bulletin, 86(7): 1201-1216.
|
Miall, A.D., 2014. Fluvial Depositional Systems. Springer, Amsterdam, 316.
|
Miller, K. G., Browning, J. V., Schmelz, W. J., et al., 2017. Back to Basics of Sequence Stratigraphy: Early Miocene and Mid-Cretaceous Examples from the New Jersey Paleoshelf. Journal of Sedimentary Research, 8(1): 148-176. https://doi.org/10.2110/jsr.2017.73
|
Neal, J., Abreu, V., 2009. Sequence Stratigraphy Hierarchy and the Accommodation Succession Method. Geology, 37(9): 779-782. doi: 10.1130/G25722A.1
|
Neal, J. E., Abreu, V., Bohacs, K. M., et al., 2016. Accommodation Succession (δA/δS) Sequence Stratigraphy: Observational Method, Utility and Insights into Sequence Boundary Formation. Journal of the Geological Society, 173(5): 803-816. https://doi.org/10.1144/jgs2015-165
|
Payton, C.E., 1977. Seismic Stratigraphy-Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoir, 26: 516. http://lib-phds1.weizmann.ac.il/vufind/Record/000066987
|
Posamentier, H.W., Allen, G.P., 1999. Siliciclastic Sequence Stratigraphy: Concepts and Applications. SEPM Concepts, Sedimentology, Paleontology, 7: 210.
|
Posamentier, H. W., Kolla, V., 2003. Seismic Geomorphology and Stratigraphy of Depositional Elements in Deep-Water Settings. Journal of Sedimentary Research, 73(3): 367-388. doi: 10.1306/111302730367
|
Qin, G.Q., 1996. Application of Micropaleontology to the Sequence Stratigraphic Studies of Late Cenozoic in the Zhujiang River Mouth Basin. Marine Geology & Quaternary Geology, 16(4): 1-18 (in Chinese with English abstract).
|
Reijenstein, H.M., Posamentier, H.W., Bhattacharya, J.P., 2011. Seismic Geomorphology and High-Resolution Seismic Stratigraphy of Inner-Shelf Fluvial, Estuarine, Deltaic, and Marine Sequences, Gulf of Thailand. American Association of Petroleum Geologists Bulletin, 95: 1959-1990. doi: 10.1306/03151110134
|
Sun, Z., Zhong, Z., Keep, M., et al., 2009. 3D Analogue Modeling of the South China Sea: A Discussion on Breakup Pattern. J. Asian Earth Sci., 34: 544-556. doi: 10.1016/j.jseaes.2008.09.002
|
Wagoner, J.C., Mitchum, R.M., Campion, K., et al., 1990. Siliciclastic Sequence Stratigraphy in Well Logs, Core, and Outcrops: Concepts for High-Resolution Correlation of Time and Facies. American Association of Petroleum Geologists Methods in Exploration Series, 7: 55.
|
Wilgus, C.K., Hastings, B.S., Posamentier, H., et al., 1988. Sea-Level Changes: An Integrated Approach. SEPM Special Publication, 42: 407. http://adsabs.harvard.edu/abs/1986Geo....14..535R
|
Xiong, W.L., Zhu, J.Z., Yang, X.Y., et al., 2020. Study on the Genetic and Accumulation Process of Oil and Gas in the North Uplift Structural Belt of Enping Sag. China Offshore Oil and Gas, 32(1): 54-65 (in Chinese with English abstract).
|
Zecchin, M., 2007. The Architectural Variability of Small-Scale Cycles in Shelf and Ramp Clastic Systems: The Controlling Factors. Earth-Science Reviews, 84: 21-55. doi: 10.1016/j.earscirev.2007.05.003
|
Zecchin, M., Catuneanu, O., 2017. High-Resolution Sequence Stratigraphy of Clastic Shelves Ⅵ: Mixed Siliciclastic-Carbonate Systems. Marine and Petroleum Geology, 88: 712-723. doi: 10.1016/j.marpetgeo.2017.09.012
|
Zeng, H., Hentz, T.F., 2004. High-Frequency Sequence Stratigraphy from Seismic Sedimentology: Applied to Miocene, Vermilion Block 50, Tiger Shoal Area, Offshore Louisiana. American Association of Petroleum Geologists Bulletin, 88: 153-174. doi: 10.1306/10060303018
|
Zeng, H., Zhu, X., Liu, Q., et al., 2020. An Alternative, Seismic-Assisted Method of Fluvial Architectural- Element Analysis in the Subsurface: Neogene, Shaleitian Area, Bohai Bay Basin, China. Marine and Petroleum Geology, 87: 118. https://doi.org/10.1016/j.marpetgeo.2020.104435
|
Zhang, Y.Z., Qi, J.F., Wu, J.F., 2019. Cenozoic Faults Systems and Its Geodynamics of the Continental Margin Basins in the Northern of South China Sea. Earth Science, 44(2): 603-625 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dqkx201902020
|
Zhu, H.T., Liu, K.Y., Zhu, X.M., et al., 2018. Varieties of Sequence Stratigraphic Configurations in Continental Basins. Earth Science, 43(3): 770-785 (in Chinese with English abstract).
|
Zhu, H.T., Yang, X.H., Shu, Y., et al., 2012. The Sequence Stratigraphic Architecture of Continental Lake Basin and Its Significance on Lithofacies Prediction: Taking Huizhou Sag in Zhujiangkou Basin as an Example. Earth Science Frontiers, 19(1): 32-39 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201201006.htm
|
Zhu, X.M., Dong, Y.L., Zeng, H.L., et al., 2019. New Development Trend of Sedimentary Geology: Seismic Sedimentology. Journal of Palaeogeography, 21(2): 189-201 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GDLX201902001.htm
|
Zhuo, H., Wang, Y., Shi, H., et al., 2015. Contrasting Fluvial Styles across the Mid-Pleistocene Climate Transition in the Northern Shelf of the South China Sea: Evidence from 3D Seismic Data. Quaternary Science Reviews, 129: 128-146. doi: 10.1016/j.quascirev.2015.10.012
|
Zhuo, H., Wang, Y., Sun, Z., et al., 2019. Along-Strike Variability in Shelf-Margin Morphology and Accretion Pattern: An Example from the Northern Margin of the South China Sea. Basin Research, 31: 431-460. doi: 10.1111/bre.12329
|
龚丽, 朱红涛, 舒誉, 等, 2014. 珠江口盆地恩平凹陷文昌组层序格架中中-深湖相烃源岩空间展布规律及发育模式. 地球科学, 39(5): 546-556. doi: 10.3799/dqkx.2014.052
|
何敏, 朱伟林, 吴哲, 等, 2019. 珠江口盆地新构造运动特征与油气成藏. 中国海上油气, 31(5): 9-20.
|
梁卫, 李小平, 2020. 珠江口盆地东部碎屑岩-碳酸盐混合沉积区岩性油气藏形成地质条件与潜力. 地球科学, 45(10): 3870-3884. doi: 10.3799/dqkx.2020.174
|
秦国权, 1996. 微体古生物在珠江口盆地新生代晚期层序地层学研究中的应用. 海洋地质与第四纪地质, 16(4): 1-18.
|
熊万林, 朱俊章, 杨兴业, 等, 2020. 恩平凹陷北带隆起构造带油气成因来源及成藏过程研究. 中国海上油气, 32(1): 54-65.
|
张远泽, 漆家福, 吴景富, 2019. 南海北部新生代盆地断裂系统及构造动力学影响因素. 地球科学, 44(2): 603-625. doi: 10.3799/dqkx.2018.542
|
朱红涛, 刘可禹, 朱筱敏, 等, 2018. 陆相盆地层序构型多元化体系. 地球科学, 43(3): 770-785. doi: 10.3799/dqkx.2018.906
|
朱红涛, 杨香华, 舒誉, 等, 2012. 陆相湖盆层序构型及其岩性预测意义——以珠江口盆地惠州凹陷为例. 地学前缘, 19(1): 32-39.
|
朱筱敏, 董艳蕾, 曾洪流, 等, 2019. 沉积地质学发展新航程——地震沉积学. 古地理学报, 21(2): 189-201.
|