• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Li Lin, Zhang Cheng, Yan Chun, Yang Taotao, Xie Xi'nong, Wang Shaokai, Chu Shengming, 2021. Characteristics and Genetic Mechanism of a Large-Scale Submarine Gravity-Driven System in Huaguang Depression, Qiongdongnan Basin. Earth Science, 46(10): 3707-3716. doi: 10.3799/dqkx.2021.014
    Citation: Li Lin, Zhang Cheng, Yan Chun, Yang Taotao, Xie Xi'nong, Wang Shaokai, Chu Shengming, 2021. Characteristics and Genetic Mechanism of a Large-Scale Submarine Gravity-Driven System in Huaguang Depression, Qiongdongnan Basin. Earth Science, 46(10): 3707-3716. doi: 10.3799/dqkx.2021.014

    Characteristics and Genetic Mechanism of a Large-Scale Submarine Gravity-Driven System in Huaguang Depression, Qiongdongnan Basin

    doi: 10.3799/dqkx.2021.014
    • Received Date: 2020-11-24
      Available Online: 2021-11-03
    • Publish Date: 2021-11-03
    • The study on submarine gravity-driven system (SGDS) is of great significance to understand the stability of submarine slope and the deep-water sedimentary processes. A large-scale SGDS sliding from south to north developed in the upper Miocene and above strata in the Huaguang depression of the Qiongdongnan basin, northern margin of the South China Sea. Based on regional 2D seismic data, in this paper it describes the characteristics of seismic facies and development of this large-scale SGDS and discusses its genetic mechanism. The development of the SGDS, composed of five elements including extensional domain, transitional domain, contractional domain, sliding surface and weak layer, could be divided into three stages as follows: the Late Miocene pre-gravity-sliding stage, the Pliocene syn-gravity-sliding stage, and the Quaternary post-gravity-sliding stage. During the fore-gravity-sliding stage, the channel complex was deposited on the bathyal argillaceous slope, and served on the material basis for gravity sliding. During the syn-gravity-sliding stage, which is the main stage of the SGDS development, the sediments were draped on the topography caused by intense deformation, and at the same time, there was also a certain degree of deformation. During the post-gravity-sliding stage, meaning the shrinking of the SGDS, the sediments gradually filled up the topography caused by gravity sliding and continued to deposit. It is indicated that the slope topography and high-speed sediment supply is the basis for the development of the SGDS, and the activation of basement faults and diapirism may be the trigger for its development.

       

    • Alsop, G. I., Weinberger, R., Marco, S., et al., 2021. Detachment Fold Duplexes within Gravity-Driven Fold and Thrust Systems. Journal of Structural Geology, 142: 104207. https://doi.org/10.1016/j.jsg.2020.104207
      Alves, T.M., 2015. Submarine Slide Blocks and Associated Soft-Sediment Deformation in Deep-Water Basins: A Review. Marine and Petroleum Geology, 67: 262-285. https://doi.org/10.1016/j.marpetgeo.2015.05.010
      Bull, S., Cartwright, J., Huuse, M., 2009. A Review of Kinematic Indicators from Mass-Transport Complexes Using 3D Seismic Data. Marine and Petroleum Geology, 26(7): 1132-1151. https://doi.org/10.1016/j.marpetgeo.2008.09.011
      Butler, R. W. H., Turner, J. P., 2010. Gravitational Collapse at Continental Margins: Products and Processes; An Introduction. Journal of the Geological Society, 167(3): 569-570. https://doi.org/10.1144/0016-76492010-003
      Carter, A., Roques, D., Bristow, C.S., 2000. Denudation History of Onshore Central Vietnam: Constraints on the Cenozoic Evolution of the Western Margin of the South China Sea. Tectonophysics, 322(3-4): 265-277. https://doi.org/10.1016/S0040-1951(00)00091-3
      Chen, H., Xie, X. N., Mao, K. N., et al., 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. https://doi.org/10.1007/s12583-020-1284-z
      Clift, P. D., Sun, Z., 2006. The Sedimentary and Tectonic Evolution of the Yinggehai-Song Hong Basin and the Southern Hainan Margin, South China Sea: Implications for Tibetan Uplift and Monsoon Intensification. Journal of Geophysical Research: Solid Earth, 111(B6): B06405B6. https://doi.org/10.1029/2005jb004048
      de Vera, J., Granado, P., McClay, K., 2010. Structural Evolution of the Orange Basin Gravity-Driven System, Offshore Namibia. Marine and Petroleum Geology, 27(1): 223-237. doi: 10.1016/j.marpetgeo.2009.02.003
      Fyhn, M.B.W., Boldreel, L.O., Nielsen, L.H., 2009. Geological Development of the Central and South Vietnamese Margin: Implications for the Establishment of the South China Sea, Indochinese Escape Tectonics and Cenozoic Volcanism. Tectonophysics, 478(3/4): 184-214. https://doi.org/10.1016/j.tecto.2009.08.002
      Huhn, K., Arroyo, M., Cattaneo, A., et al., 2020. Modern Submarine Landslide Complexes: A Short Review. In: Ogata, K., Festa, A., Pini, G.A., eds., Submarine Landslides Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles. The American Geophysical Union and John Wiley and Sons, Inc., Washington, D.C., Hoboken, 183-200.
      Li, L. L., Shi, F. Y., Ma, G. F., et al., 2019. Tsunamigenic Potential of the Baiyun Slide Complex in the South China Sea. Journal of Geophysical Research: Solid Earth, 124(8): 7680-7698. https://doi.org/10.1029/2019jb018062
      Li, X.X., Zhong, Z.H., Dong, W.L., et al., 2006. Paleogene Rift Structure and Its Dynamics of Qiongdongnan Basin. Petroleum Exploration and Development, 33(6): 713-721 (in Chinese with English abstract). http://www.researchgate.net/publication/283887282_Paleogene_rift_structure_and_its_dynamics_of_Qiongdongnan_Basin
      Liao, J., Gong, J.M., Chen, J.W., et al., 2020. New Discovery of Gravity Gliding Structure in the Offshore Indus Basin. Marine Geology Frontiers, 36(6): 76-79 (in Chinese with English abstract).
      Moscardelli, L., Wood, L., Mann, P., 2006. Mass-Transport Complexes and Associated Processes in the Offshore Area of Trinidad and Venezuela. AAPG Bulletin, 90(7): 1059-1088. doi: 10.1306/02210605052
      Mosher, D.C., Moscardelli, L., Shipp, R.C., et al., 2010. Submarine Mass Movements and Their Consequences. 4th International Symposium. Springer, Netherlands, 1-8. https://doi.org/10.1007/978-90-481-3071-9_1
      Ren, J.Y., Lei, C., 2011. Tectonic Stratigraphic Framework of Yinggehai-Qiongdongnan Basins and Its Implication for Tectonic Province Division in South China Sea. Chinese Journal of Geophysics, 54(12): 3303-3314 (in Chinese with English abstract). http://tga.cgu.org.tw/AbstractFinal/U6-P-27.pdf
      Ren, J.F., Sun, M., Han, B., 2020. A Giant Submarine Landslide and Its Triggering Mechanisms on the Nansha Trough Margin, South China Sea. Earth Science, https://kns.cnki.net/kcms/detail/42.1874.P.20200714.1059.008.html (in Chinese with English abstract). https://kns.cnki.net/kcms/detail/42.1874.P.20200714.1059.008.html
      Scarselli, N., McClay, K., Elders, C., 2016. Seismic Geomorphology of Cretaceous Megaslides Offshore Namibia (Orange Basin): Insights into Segmentation and Degradation of Gravity-Driven Linked Systems. Marine and Petroleum Geology, 75: 151-180. https://doi.org/10.1016/j.marpetgeo.2016.03.012
      Shanmugam, G., Wang, Y., 2015. The Landslide Problem. Journal of Palaeogeography, 4(2): 109-166. https://doi.org/10.3724/SP.J.1261.2015.00071
      Sun, Q.L., Xie, X.N., Wu, S.G., 2020. Submarine Landslides in the Northern South China Sea: Characteristics, Geohazard Evaluation and Perspective. Earth Sciences Frontiers, https://doi.org/10.13745/j.esf.sf.2020.9.3 (in Chinese with English abstract)
      Suo, S.T., 1983. On Gravitational Gliding Structures. Earth Science-Journal of Wuhan College of Geology, 22(3): 11-22 (in Chinese with English abstract)
      Terry, J. P., Winspear, N., Goff, J., et al., 2017. Past and Potential Tsunami Sources in the South China Sea: A Brief Synthesis. Earth-Science Reviews, 167: 47-61. https://doi.org/10.1016/j.earscirev.2017.02.007
      Wang, D.W., Wu, S.G., Li, C.F., et al., 2016. Submarine Slide Evidence for Late Miocene Strike-Slip Reversal of the Red River Fault. Scientia Sinica (Terrae), 46(10): 1349-1357 (in Chinese with English abstract).
      Wang, D.W., Wu, S.G., Lü, F.L., et al., 2011. Mass Transport Deposits and Its Significance for Oil & Gas Exploration in Deep-Water Regions of South China Sea. Journal of China University of Petroleum (Edition of Natural Science), 35(5): 14-19 (in Chinese with English abstract).
      Wang, D.W., Wu, S.G., Qin, Z.L., et al., 2013. Seismic Characteristics of the Huaguang Mass Transport Deposits in the Qiongdongnan Basin, South China Sea: Implications for Regional Tectonic Activity. Marine Geology, 346: 165-182 doi: 10.1016/j.margeo.2013.09.003
      Wang, H. R., 2007. Deep-Water Sedimentary Process-Response and Its Main Controlling Factors in the Northern Continental Margin of the South China Sea (Dissertation). China University of Petroleum, Beijing, 82-97 (in Chinese with English abstract).
      Wei, K.S., Cui, H.Y., Ye, S.F., et al., 2001. High-Precision Sequence Stratigraphy in Qiongdongnan Basin. Earth Science, 26(1): 59-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200101011.htm
      Xie, X. N., Müller, R. D., Li, S. T., et al., 2006. Origin of Anomalous Subsidence along the Northern South China Sea Margin and Its Relationship to Dynamic Topography. Marine and Petroleum Geology, 23(7): 745-765. https://doi.org/10.1016/j.marpetgeo.2006.03.004
      Xie, X. N., Müller, R. D., Ren, J. Y., et al., 2008. Stratigraphic Architecture and Evolution of the Continental Slope System in Offshore Hainan, Northern South China Sea. Marine Geology, 247(3/4): 129-144.
      Xie, X.N., Chen, Z.H., Sun, Z.P., et al., 2012. Depositional Architecture Characteristics of Deepwater Depositional Systems on the Continental Margins of Northwestern South China Sea. Earth Science, 37(4): 627-634 (in Chinese with English Abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201204003.htm
      Xie, X.N., Ren, J.Y., Wang, Z.F., et al., 2015. Difference of Tectonic Evolution of Continental Marginal Basins of South China Sea and Relationship with SCS Spreading. Earth Science Frontiers, 22(1): 77-87 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201501009.htm
      Xu, J. J., Ren, J.Y., Luo, P., 2019. The Evolution of a Gravity-Driven System Accompanied by Diapirism under the Control of the Prograding West Luconia Deltas in the Kangxi Depression, Southern South China Sea. Marine Geophysical Research, 40(2): 199-221. https://doi.org/10.1007/s11001-019-09384-8
      Yang, T.T., Wu, J.W., Wang, B., et al., 2012. Structural Pattern and Sediment Filling in Huaguang Sag of Southern Qiongdongnan Basin. Marine Geology & Quaternary Geology, 32(5): 13-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201205005.htm
      Yao, G.S., Yuan, S.Q., Ma, Y.B., et al., 2009. Deepwater Mass Transport Deposition System of Huaguang Depression, Qiongdongnan Basin and Its Significance for Hydrocarbon Exploration. Earth Science, 34(3): 471-476 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dqkx200903011
      Zhou, J., Yang, X.B., Yang, J.H., et al., 2019. Structure-Sedimentary Evolution and Gas Accumulation of Paleogene in Songnan Low Uplift of the Qiongdongnan Basin. Earth Science, 44(8): 2704-2716(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201908016.htm
      Zhu, M.Z., Graham, S., McHargue, T., 2009. The Red River Fault Zone in the Yinggehai Basin, South China Sea. Tectonophysics, 476(3/4): 397-417. https://doi.org/10.1016/j.tecto.2009.06.015
      李绪宣, 钟志洪, 董伟良, 等, 2006. 琼东南盆地古近纪裂陷构造特征及其动力学机制. 石油勘探与开发, 33(6): 713-721. doi: 10.3321/j.issn:1000-0747.2006.06.014
      廖晶, 龚建明, 陈建文, 等, 2020. 印度扇近海盆地重力滑动构造新发现. 海洋地质前沿, 36(6): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202006010.htm
      任建业, 雷超, 2011. 莺歌海-琼东南盆地构造-地层格架及南海动力变形分区. 地球物理学报, 54(12): 3303-3314. doi: 10.3969/j.issn.0001-5733.2011.12.028
      任金锋, 孙鸣, 韩冰, 2020. 南海南沙海槽大型海底滑坡的发育特征及成因机制. 地球科学. https://kns.cnki.net/kcms/detail/42.1874.P.20200714.1059.008.html doi: 10.3799/dqkx.2020.185
      孙启良, 解习农, 吴时国, 2020. 南海北部海底滑坡的特征、灾害评估和研究展望. 地学前缘. https://doi.org/10.13745/j.esf.sf.2020.9.3
      索书田, 1983. 重力滑动构造. 地球科学——武汉地质学院学报, 22(3): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201205023.htm
      王大伟, 吴时国, 李春峰, 等, 2016. 晚中新世红河断裂走滑反转事件的海底滑坡证据. 中国科学(地球科学), 46(10): 1349-1357. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201610006.htm
      王大伟, 吴时国, 吕福亮, 等, 2011. 南海深水块体搬运沉积体系及其油气勘探意义. 中国石油大学学报(自然科学版), 35(5): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201105005.htm
      王海荣, 2007. 南海北部大陆边缘深水沉积过程-响应及其主控因素(博士学位论文). 北京: 中国石油大学, 82-97.
      魏魁生, 崔旱云, 叶淑芬, 等, 2001. 琼东南盆地高精度层序地层学研究. 地球科学, 26(1): 59-66. http://www.earth-science.net/article/id/810
      解习农, 陈志宏, 孙志鹏, 等, 2012. 南海西北陆缘深水沉积体系内部构成特征. 地球科学, 37(4): 627-634. doi: 10.3799/dqkx.2012.072
      解习农, 任建业, 王振峰, 等, 2015. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系. 地学前缘, 22(1): 77-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501009.htm
      杨涛涛, 吴敬武, 王彬, 等, 2012. 琼东南盆地华光凹陷构造特征及沉积充填. 海洋地质与第四纪地质, 32(5): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201205005.htm
      姚根顺, 袁圣强, 马玉波, 等, 2009. 琼东南华光凹陷深水重力搬运沉积体系及其油气勘探. 地球科学, 34(3): 471-476. http://www.earth-science.net/article/id/1850
      周杰, 杨希冰, 杨金海, 等, 2019. 琼东南盆地松南低凸起古近系构造-沉积演化特征与天然气成藏. 地球科学, 44(8): 2704-2716. doi: 10.3799/dqkx.2019.104
    • Relative Articles

    • Cited by

      Periodical cited type(6)

      1. 黄时卓,李芳,宋鹏,胡斌,孙万元. 琼东南盆地超深水浅部气藏地球物理识别技术. 地球科学. 2024(01): 313-323 . 本站查看
      2. 黄向胜,闫琢玉,张东峰,黄合庭,罗程飞. 琼东南盆地Ⅱ号断裂带新生界多期热流体活动与天然气运聚特征. 岩性油气藏. 2024(05): 67-76 .
      3. 杨志力,李丽,吴佳男,李东,马宏霞,田洪训,张远泽,毛超林,李林,杨涛涛. 西沙海域晚中新世深水水道发育特征及主控因素. 东北石油大学学报. 2023(04): 29-38+69+6-7 .
      4. 孙美静,陈泓君,杨楚鹏,胡小三,刘杰. 南海西沙海域东岛北峡谷体系形态、演化及其成因机制. 地质学报. 2023(10): 3225-3236 .
      5. 孙美静,姚永坚,罗伟东,胡小三,周娇,徐子英,鞠东,刘杰. 南海西北部中建南海底峡谷群的发现及演化特征. 地球科学. 2022(11): 4005-4019 . 本站查看
      6. 龚广传,李磊,何旺,张威,高毅凡,程琳燕,杨志鹏. 块体搬运沉积顶面沉积过程模拟--以南海北部坡为例. 海洋地质前沿. 2022(12): 75-83 .

      Other cited types(0)

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-05010203040
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 40.1 %FULLTEXT: 40.1 %META: 55.6 %META: 55.6 %PDF: 4.2 %PDF: 4.2 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.0 %其他: 7.0 %其他: 0.4 %其他: 0.4 %China: 0.3 %China: 0.3 %India: 0.2 %India: 0.2 %Norway: 0.2 %Norway: 0.2 %Research: 0.2 %Research: 0.2 %United Kingdom: 0.3 %United Kingdom: 0.3 %[]: 0.1 %[]: 0.1 %三亚: 0.7 %三亚: 0.7 %上海: 1.2 %上海: 1.2 %东莞: 0.3 %东莞: 0.3 %临汾: 0.3 %临汾: 0.3 %临沂: 0.1 %临沂: 0.1 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %九江: 0.1 %九江: 0.1 %伊萨卡: 0.1 %伊萨卡: 0.1 %克孜勒苏: 0.4 %克孜勒苏: 0.4 %北京: 19.0 %北京: 19.0 %十堰: 0.1 %十堰: 0.1 %南京: 0.3 %南京: 0.3 %南昌: 0.2 %南昌: 0.2 %南通: 0.1 %南通: 0.1 %厦门: 0.1 %厦门: 0.1 %台州: 0.3 %台州: 0.3 %吐鲁番地区: 0.1 %吐鲁番地区: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.4 %大连: 0.4 %天津: 0.5 %天津: 0.5 %娄底: 0.1 %娄底: 0.1 %宁波: 0.1 %宁波: 0.1 %宜昌: 0.1 %宜昌: 0.1 %宣城: 0.2 %宣城: 0.2 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %常州: 0.1 %常州: 0.1 %广州: 1.3 %广州: 1.3 %张家口: 0.4 %张家口: 0.4 %成都: 0.6 %成都: 0.6 %承德: 0.1 %承德: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昌江: 0.1 %昌江: 0.1 %晋城: 0.1 %晋城: 0.1 %本那比: 0.1 %本那比: 0.1 %杭州: 1.7 %杭州: 1.7 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 1.8 %武汉: 1.8 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.1 %济南: 0.1 %海口: 0.8 %海口: 0.8 %深圳: 0.2 %深圳: 0.2 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.2 %湖州: 0.2 %湛江: 0.1 %湛江: 0.1 %漯河: 0.7 %漯河: 0.7 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.1 %烟台: 0.1 %珠海: 0.2 %珠海: 0.2 %福州: 0.1 %福州: 0.1 %绍兴: 0.2 %绍兴: 0.2 %芒廷维尤: 14.9 %芒廷维尤: 14.9 %芝加哥: 0.5 %芝加哥: 0.5 %荆州: 0.1 %荆州: 0.1 %莫斯科: 0.3 %莫斯科: 0.3 %西宁: 36.2 %西宁: 36.2 %西安: 0.6 %西安: 0.6 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.4 %运城: 1.4 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %长春: 0.1 %长春: 0.1 %长沙: 0.6 %长沙: 0.6 %雅加达: 0.2 %雅加达: 0.2 %青岛: 0.5 %青岛: 0.5 %其他其他ChinaIndiaNorwayResearchUnited Kingdom[]三亚上海东莞临汾临沂丽水乌鲁木齐九江伊萨卡克孜勒苏北京十堰南京南昌南通厦门台州吐鲁番地区呼和浩特哥伦布嘉兴大连天津娄底宁波宜昌宣城巴音郭楞常州广州张家口成都承德新乡无锡昌江晋城本那比杭州格兰特县武汉沈阳济南海口深圳温州渭南湖州湛江漯河潍坊烟台珠海福州绍兴芒廷维尤芝加哥荆州莫斯科西宁西安贵阳运城郑州重庆长春长沙雅加达青岛

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (980) PDF downloads(75) Cited by(6)
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return