• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 6
    Jun.  2021
    Turn off MathJax
    Article Contents
    Guo Yongli, Zhang Cheng, Wu Qing, Quan Xiqiang, 2021. Natural Attenuation Mechanisms of Petroleum Hydrocarbons in a Fractured Karst Aquifer. Earth Science, 46(6): 2258-2266. doi: 10.3799/dqkx.2021.020
    Citation: Guo Yongli, Zhang Cheng, Wu Qing, Quan Xiqiang, 2021. Natural Attenuation Mechanisms of Petroleum Hydrocarbons in a Fractured Karst Aquifer. Earth Science, 46(6): 2258-2266. doi: 10.3799/dqkx.2021.020

    Natural Attenuation Mechanisms of Petroleum Hydrocarbons in a Fractured Karst Aquifer

    doi: 10.3799/dqkx.2021.020
    • Received Date: 2020-12-25
    • Publish Date: 2021-06-15
    • It is vital to prevent the pollution of petroleum hydrocarbons in the groundwater environment globally. In the paper it uses numerical simulation method and hydrogeochemical techniques to simulate the natural attenuation processes of petroleum hydrocarbons in the fractured aquifer and calculate the natural attenuation mechanisms quantitatively. BIOSCREEN model was used to simulate the natural attenuation processes of petroleum hydrocarbons, the contribution rates of physical processes and biodegradation processes to the total natural attenuation are 31.53% and 68.47%, respectively, and biodegradation was the main mechanism for the natural remediation ability of fractured karst aquifer. Inter-relationships between water chemistries (HCO3-, NO3-) and isotopes (δ15NNO3, δ18ONO3 and δ13CDIC) were analyzed by the principle of quality conservation in the research. The average contribution rate of biodegradation to the concentration of HCO3- in the groundwater system was 33.93%. Ion of NO3- was the main electron acceptor in the anaerobic biodegradation processes of petroleum hydrocarbons without methanogenic activity. The process of petroleum hydrocarbon biodegradation consuming NO3- contributes 30.77% to the δ13CDIC in the groundwater system, which accounts for 90.69% of total biodegradation of petroleum hydrocarbons in the fractured karst aquifer.

       

    • loading
    • Atteia, O., Höhener, P., 2012. Fast Semi-Analytical Approach to Approximate Plumes of Dissolved Redox-Reactive Pollutants in Heterogeneous Aquifers. 1. BTEX. Advances in Water Resources, 46: 63-73. https://doi.org/10.1016/j.advwatres.2011.10.003
      Chiu, H.Y., Verpoort, F., Liu, J.K., et al., 2017. Using Intrinsic Bioremediation for Petroleum-Hydrocarbon Contaminated Groundwater Cleanup and Migration Containment: Effectiveness and Mechanism Evaluation. Journal of the Taiwan Institute of Chemical Engineers, 72: 53-61. https://doi.org/10.1016/j.jtice.2017.01.002
      Gao, Z.J., Sun, J.F., Lu, T.M., et al., 2019. Types and Assessment of Organic Pollutants in Groundwater of Dawu Source Area in Zibo. Journal of Shandong University of Science and Technology (Natural Science), 38(4): 1-9(in Chinese with English abstract).
      Guo, Y.L., Quan, X.Q., Wang, Q.G., et al., 2020. Hydrochemical Characteristics of Groundwater and Its Influencing Factors in Dawu Karst Water Source. South-to-North Water Transfers and Water Science & Technology, 18(4): 130-140(in Chinese with English abstract).
      Guo, Y.L., Wen, Z., Zhang, C., et al., 2020. Contamination and Natural Attenuation Characteristics of Petroleum Hydrocarbons in a Fractured Karst Aquifer, North China. Environmental Science and Pollution Research International, 27(18): 22780-22794. https://doi.org/10.1007/s11356-020-08723-2
      Guo, Y.L., Wu, Q., Zhai, Y.Z., et al., 2018. Characteristics of Typical Organic Pollutant in a Groundwater Source. Yellow River, 40(10): 61-65, 81(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-RMHH201810014.htm
      Jiang, W.N., 2020. Study on Identification of Natural Attenuation of Pollutants in Groundwater in Petrochemical Contaminated Site (Dissertation). Jilin University, Changchun, 58(in Chinese with English abstract).
      Jin, B., Rolle, M., Li, T., et al., 2014. Diffusive Fractionation of BTEX and Chlorinated Ethenes in Aqueous Solution: Quantification of Spatial Isotope Gradients. Environmental Science and Technology, 48(11): 6141-6150. https://doi.org/10.1021/es4046956
      Karanovic, M., Neville, C.J., Andrews, C.B., 2007. BIOSCREEN-AT: BIOSCREEN with an Exact Analytical Solution. Groundwater, 45(2): 242-245. https://doi.org/10.1111/j.1745-6584.2006.00296.x
      Kendall, C., 1998. Tracing Nitrogen Source and Cycling in Catchments. In: Kendal, C., McDonee, J.J., eds., Isotope Traces in Catchment Hydrology. Elsevier Science B.V., The Netherland, Amsterdam, 519-576.
      Lee, T.H., Cao, W.Z., Tsang, D.C.W., et al., 2019. Emulsified Polycolloid Substrate Biobarrier for Benzene and Petroleum-Hydrocarbon Plume Containment and Migration Control: A Field-Scale Study. Science of the Total Environment, 666: 839-848. https://doi.org/10.1016/j.scitotenv.2019.02.160
      Li, M.R., Wang, W.S., Ren, S.J., et al., 2014. Screening Typical Pollutants by Modified Comprehensive Evaluation Method: A Case Study of Typical Pollutants Screening in Groundwater of Dawu Water Source. Environmental Pollution & Control, 36(11): 72-77(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJWR201411015.htm
      Li, P.Y., 2016. Groundwater Environment under Human Intervention and the Methodological System for Research in This Field. South-to-North Water Transfers and Water Science & Technology, 14(1): 18-24(in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSBD201601003.htm
      Liu, S.Y., 2016. Dynamic Assessment on Pollution Risk of Groundwater Source in Dawu (Dissertation). Beijing Normal University, Beijing, 80-94(in Chinese with English abstract).
      Liu, X.H., Fu, J.M., Shen, Z.L., et al., 1996. Hydrogeochemical Change Induced by Oil Sewage Leakage: A Case of the Groundwater Source in Zibo City, Shandong Province, China. Geochimica, 25(4): 331-338(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX604.003.htm
      Lü, H., Su, X.S., Wang, Y., et al., 2018. Effectiveness and Mechanism of Natural Attenuation at a Petroleum-Hydrocarbon Contaminated Site. Chemosphere, 206: 293-301. https://doi.org/10.1016/j.chemosphere.2018.04.171
      Lü, H., Wang, Y., Wang, H., 2019. Determination of Major Pollutant and Biogeochemical Processes in an Oil-Contaminated Aquifer Using Human Health Risk Assessment and Multivariate Statistical Analysis. Human and Ecological Risk Assessment: An International Journal, 25(3): 505-526. https://doi.org/10.1080/10807039.2018.1449099
      Marić, N., Matić, I., Papić, P., et al., 2018. Natural Attenuation of Petroleum Hydrocarbons: A Study of Biodegradation Effects in Groundwater (Vitanovac, Serbia). Environmental Monitoring and Assessment, 190: 89. https://doi.org/10.1007/s10661-018-6462-4
      Müller, J.B., Ramos, D.T., Larose, C., et al., 2017. Combined Iron and Sulfate Reduction Biostimulation as a Novel Approach to Enhance BTEX and PAH Source-Zone Biodegradation in Biodiesel Blend-Contaminated Groundwater. Journal of Hazardous Materials, 326: 229-236. https://doi.org/10.1016/j.jhazmat.2016.12.005
      Parker, S.R., Gammons, C.H., Smith, M.G., et al., 2012. Behavior of Stable Isotopes of Dissolved Oxygen, Dissolved Inorganic Carbon and Nitrate in Groundwater at a Former Wood Treatment Facility Containing Hydrocarbon Contamination. Applied Geochemistry, 27(6): 1101-1110. https://doi.org/10.1016/j.apgeochem.2012.02.035
      Pavlovskiy, I., Selle, B., 2015. Integrating Hydrogeochemical, Hydrogeological, and Environmental Tracer Data to Understand Groundwater Flow for a Karstified Aquifer System. Groundwater, 53(Suppl. 1): 156-165. https://doi.org/10.1111/gwat.12262
      Shang, Y.N., 2013. Study on Karst Water Level Dynamic Change for Many Years of Dawu Water Resource Area in Zibo City. Shangdong Land and Resources, 29(9): 44-47(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SDDI201309010.htm
      Sookhak Lari, K., Davis, G.B., Rayner, J.L., et al., 2019. Natural Source Zone Depletion of LNAPL: A Critical Review Supporting Modelling Approaches. Water Research, 157: 630-646. https://doi.org/10.1016/j.watres.2019.04.001
      Sperfeld, M., Rauschenbach, C., Diekert, G., et al., 2018. Microbial Community of a Gasworks Aquifer and Identification of Nitrate-Reducing Azoarcus and Georgfuchsia as Key Players in BTEX Degradation. Water Research, 132: 146-157. https://doi.org/10.1016/j.watres.2017.12.040
      Su, C.L., Zhang, Y., Ma, Y.H., et al., 2019. Hydrochemical Evolution Processes of Karst Groundwater in Guiyang City: Evidences from Hydrochemistry and 87Sr/86Sr Ratios. Earth Science, 44(9): 2829-2838(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909002.htm
      Varjani, S.J., Upasani, V.N., 2017. A New Look on Factors Affecting Microbial Degradation of Petroleum Hydrocarbon Pollutants. International Biodeterioration & Biodegradation, 120: 71-83. https://doi.org/10.1016/j.ibiod.2017.02.006
      Wang, Z.J., Zhou, H., Qi, L.X., et al., 2020. Method for Characterizing Structure and Hydrological Response in Karst Water Systems: A Case Study in Y-M System in Three Gorges Area. Earth Science, 45(12): 4512-4523(in Chinese with English abstract).
      Zhang, X.M., Zhou, J., Xiong, X.F., et al., 2019. Evaluation of Contaminant Transport Modeling Software for Groundwater Environmental Impact Assessment. Research of Environmental Sciences, 32(1): 10-16(in Chinese with English abstract). http://www.researchgate.net/publication/332712851_Evaluation_of_Contaminant_Transport_Modeling_Software_for_Groundwater_Environmental_Impact_Assessment
      Zhu, X.Y., Liu, J.L., Zhu, J.J., et al., 2000. Characteristics of Distribution and Transport of Petroleum Contaminants in Fracture-Karst Water in Zibo Area, Shandong Province, China. Science in China: Earth Sciences, 43(2): 141-150. doi: 10.1007/BF02878143
      高宗军, 孙金凤, 鲁统民, 等, 2019. 淄博市大武水源地地下水有机污染物种类与分析评价. 山东科技大学学报(自然科学版), 38(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201904001.htm
      郭永丽, 全洗强, 王奇岗, 等, 2020. 大武岩溶水源地地下水水化学特征及其影响因素. 南水北调与水利科技(中英文), 18(4): 130-140. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD202004013.htm
      郭永丽, 吴庆, 翟远征, 等, 2018. 某水源地地下水中石油类有机污染特征. 人民黄河, 40(10): 61-65, 81. doi: 10.3969/j.issn.1000-1379.2018.10.013
      姜伟男, 2020. 某石油化工污染场地地下水中污染物自然衰减识别研究(硕士学位论文). 长春: 吉林大学, 58.
      李沫蕊, 王韦舒, 任姝娟, 等, 2014. 运用改进综合评分法筛选典型污染物的研究——以大武水源地地下水典型污染物筛选为例. 环境污染与防治, 36(11): 72-77. doi: 10.3969/j.issn.1001-3865.2014.11.014
      李培月, 2016. 人类活动影响下的地下水环境及其研究的方法体系. 南水北调与水利科技, 14(1): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201601003.htm
      刘姝媛, 2016. 大武地下水水源地污染风险动态评价研究(硕士学位论文). 北京: 北京师范大学, 80-94.
      刘新华, 傅家谟, 沈照理, 等, 1996. 油类污染过程中地下水地球化学环境的变化——以山东省淄博市某地下水水源地为例. 地球化学, 25(4): 331-338. doi: 10.3321/j.issn:0379-1726.1996.04.004
      尚宇宁, 2013. 淄博市大武水源地岩溶水水位多年动态变化分析研究. 山东国土资源, 29(9): 44-47. doi: 10.3969/j.issn.1672-6979.2013.09.010
      苏春利, 张雅, 马燕华, 等, 2019. 贵阳市岩溶地下水水化学演化机制: 水化学和锶同位素证据. 地球科学, 44(9): 2829-2838. doi: 10.3799/dqkx.2019.214
      王泽君, 周宏, 齐凌轩, 等, 2020. 岩溶水系统结构和水文响应机制的定量识别方法: 以三峡鱼迷岩溶水系统为例. 地球科学, 45(12): 4512-4523. doi: 10.3799/dqkx.2020.261
      张小茅, 周俊, 熊小锋, 等, 2019. 地下水环境影响评价中污染物运移模拟软件的适宜性评估. 环境科学研究, 32(1): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201901002.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)  / Tables(4)

      Article views (1495) PDF downloads(42) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return