• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 10
    Nov.  2021
    Turn off MathJax
    Article Contents
    Chen Jiaju, Xu Xianbing, Liang Chenghua, Xu Yadong, 2021. Provenance Analysis and Tectonic Implications of Middle Devonian Quartzose Conglomerate and Sandstone in Southeastern Hunan Province, South China. Earth Science, 46(10): 3421-3434. doi: 10.3799/dqkx.2021.022
    Citation: Chen Jiaju, Xu Xianbing, Liang Chenghua, Xu Yadong, 2021. Provenance Analysis and Tectonic Implications of Middle Devonian Quartzose Conglomerate and Sandstone in Southeastern Hunan Province, South China. Earth Science, 46(10): 3421-3434. doi: 10.3799/dqkx.2021.022

    Provenance Analysis and Tectonic Implications of Middle Devonian Quartzose Conglomerate and Sandstone in Southeastern Hunan Province, South China

    doi: 10.3799/dqkx.2021.022
    • Received Date: 2021-02-01
      Available Online: 2021-11-03
    • Publish Date: 2021-11-03
    • The formation and denudation of the Early Paleozoic Jiangnan uplift can be used to restrict the Kwangsian orogeny and its dynamic mechanism in South China. Based on detrital zircon U-Pb geochronology and trace element geochemistry of the quartzose conglomerate of the Middle Devonian Tiaomajian Formation in Nanwan, south of the Jiangnan Uplift, the provenance and tectonic significance of the conglomerate are discussed. U-Pb ages of 270 available detrital zircons from the four samples consist of main peaks of 430-440 Ma and sub-peaks of 800-1 100 Ma, 1 700-2 000 Ma and 2 400-2 600 Ma. Zircon CL images, Th/U ratios and REE partition patterns indicate that detrital zircons are dominated by magmatic zircons, with only a small amount of metamorphic and hydrothermal zircons. The mineral morphology, composition and maturity indicate that the source area is near source and deposited in coastal environment. The comprehensive source analysis shows that the provenance of the quartzite conglomerate of the Middle Devonian Tiaomajian Formation in southeastern Hunan is from the Jiangnan Uplift on the north side. The Jiangnan uplift was formed during the Kwangsian period of intracontinental orogeny. The trace element geochemical characteristics of the Early Paleozoic magmatic zircons indicate that they are of continental type and formed in a continental arc tectonic setting. Combined with the regional geological characteristics, the Kwangsian orogeny in South China is the product of oceanic subduction on its southern side, which is related to the aggregation of Gondwana continent.

       

    • loading
    • Bai, D.Y., Wang, Y.Q., Wang, X.H., et al., 2007. Geochemistry, Petrogenesis and Tectonic Setting of the Early Yanshanian Peraluminous Granites in the Chuankou Region, Hengyang, Hunan. Sedimentary Geology and Tethyan Geology, 27(2): 49-59(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD200702007.htm
      Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
      Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2012. Detrital Zircon Record and Tectonic Setting. Geology(Boulder), 40(10): 875-878. https://doi.org/10.1130/g32945.1
      Charvet, J., Shu, L. S., Faure, M., et al., 2010. Structural Development of the Lower Paleozoic Belt of South China: Genesis of an Intracontinental Orogen. Journal of Asian Earth Sciences, 39(4): 309-330. https://doi.org/10.1016/j.jseaes.2010.03.006
      Chen, D.Z., Chen, Q.Y., 1994. Devonian Sedimentary Evolution and transgression-Regression Patterns in South China. Chinese Journal of Geology, 29(3): 246-255(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZKX403.004&dbcode=CJFD&year=1994&dflag=pdfdown
      Chu, Y., Lin, W., 2014. Phanerozoic Polyorogenic Deformation in Southern Jiuling Massif, Northern South China Block: Constraints from Structural Analysis and Geochronology. Journal of Asian Earth Sciences, 86(1): 117-130. https://doi.org/10.1016/j.jseaes.2013.05.019
      Dickinson, W. R., Suczek, C.A., 1979. Plate Tectonics and Sandstone Compositions 1. AAPG Bulletin, 63(12): 2164-2182. https://doi.org/10.1306/2F9188FB-16CE-11D7-8645000102C1865D
      Faure, M., Shu, L. S., Wang, B., et al., 2009. Intracontinental Subduction: A Possible Mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova, 21(5): 360-368. https://doi.org/10.1111/j.1365-3121.2009.00888.x
      Ge, Y. P., Li, L. M., Zhao, X. L., et al., 2020. Early Palaeozoic Oceanic Island-Seamount Assemblage in Northern Fujian, South China: Implications for Pre-Devonian Tectonic Evolution of the Wuyi Orogenic Belt. Geological Journal, 55(4): 3208-3228. https://doi.org/10.1002/gj.3573
      Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5/6): 1-26. https://doi.org/10.1007/s00410-015-1199-3
      Guo, J. L., Wu, Y. B., Gao, S., et al., 2015. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) Granitoid Magmatism in Yangtze Craton, South China: Implications for Late Archean Tectonics. Precambrian Research, 270: 246-266. https://doi.org/10.1016/j.precamres.2015.09.007
      Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627-630. https://doi.org/10.1130/0091-7613(2000)28627: reecoz>2.0.co;2 doi: 10.1130/0091-7613(2000)28627:reecoz>2.0.co;2
      Hsü, K. J., Sun, S., Li, J.L., et al., 1988. Mesozoic Overthrust Tectonics in South China. Geology, 16(5): 418. https://doi.org/10.1130/0091-7613(1988)0160418: motisc>2.3.co;2 doi: 10.1130/0091-7613(1988)0160418:motisc>2.3.co;2
      Hu, X.M., Xue, W.W., Lai, W., et al., 2021. Sedimentary Basinsin Orogenic Belt and Continental Geodynamics. Acta Geologica Sinica, 95(1): 139-158(in Chinese with English abstract).
      Hu, Z. C., Zhang, W., Liu, Y. S., Gao, S., et al., 2015. "Wave" SignalSmoothing and MercuryRemoving Device for Laser Ablation Quadrupole and Multiple Collector ICP-MS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152-1157. https://doi.org/10.1021/ac503749k
      Li, J. H., Dong, S. W., Zhang, Y. Q., et al., 2016. New Insights into Phanerozoic Tectonics of South China: Part 1, Polyphase Deformation in the Jiuling and Lianyunshan Domains of the Central Jiangnan Orogen. Journal of Geophysical Research: Solid Earth, 121(4): 3048-3080. https://doi.org/10.1002/2015jb012778
      Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1/2): 117-128. https://doi.org/10.1016/j.precamres.2009.07.004
      Li, X. H., Li, Z. X., Ge, W. C., et al., 2003. Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at Ca. 825 Ma?. Precambrian Research, 122(1-4): 45-83. https://doi.org/10.1016/S0301-9268(02)00207-3
      Li, X. H., Li, Z. X., Li, W. X., 2014. Detrital Zircon U-Pb Age and Hf Isotope Constrains on the Generation and Reworking of Precambrian Continental Crust in the Cathaysia Block, South China: A Synthesis. Gondwana Research, 25(3): 1202-1215. https://doi.org/10.1016/j.gr.2014.01.003
      Li, Z. X., Li, X. H., Wartho, J. A., et al., 2010. Magmatic and Metamorphic Events during the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China: New Age Constraints and Pressure-Temperature Conditions. GeologicalSocietyofAmerica Bulletin, 122(5/6): 772-793. https://doi.org/10.1130/b30021.1
      Lin, S. F., Xing, G. F., Davis, D. W., et al., 2018. Appalachian-Style Multi-Terrane Wilson Cycle Model for the Assembly of South China. Geology, 46(4): 319-322. https://doi.org/10.1130/g39806.1
      Lin, W., Faure, M., Sun, Y., et al., 2001. Compression to Extension Switch during the Middle Triassic Orogeny of Eastern China: The Case Study of the Jiulingshan Massif in the Southern Foreland of the Dabieshan. Journal of Asian Earth Sciences, 20(1): 31-43. https://doi.org/10.1016/S1367-9120(01)00020-7
      Liu, S. F., Peng, S. B., Kusky, T., et al., 2018. Origin and Tectonic Implications of an Early Paleozoic (460-440 Ma) Subduction-Accretion Shear Zone in the Northwestern Yunkai Domain, South China. Lithos, 322: 104-128. https://doi.org/10.1016/j.lithos.2018.10.006
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Ludwig, K.R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley, 39.
      Ma, W.P., Qiu, Y.X., He, F.S., 1995. Lower Paleozoic Omission Zone in Jiangnan Uplift: A Sign of Caledonian Foreland Fold Thrust Belt. Geoscience-Journal of Graduate School, China University of Geosciences, 9(3): 320-324(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ503.006.htm
      Ma, X.P., Zong, P., 2010. Assemblage of Brachiopods, Sea Level Rise and Fall, and Paleogeographic Evolution in Middle and Late Devonian Devonian Hunan Province. Scientia Sinica Terrae, 40(9): 1204-1218 (in Chinese). doi: 10.1360/zd-2010-40-9-1204
      Ma, L., Chen, H. J., Gan, K. W., et al., 2004. Tectonics and Marine Petroleum Geology in South China. Geological Publishing House, Beijing(in Chinese).
      McLennan, S.M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Special Paper of the Geological Society of America, 284: 21-40 https://doi.org/10.1130/SPE284-p21
      Mou, C. L., Zhou, B. K., Chen, X. W., et al., 2016. Lithofacies Palaeogeography Atlas of China: Ediacaran-Silurian. Geological Publishing House, Beijing(in Chinese).
      Peng, S.B., Kusky, T. M., Jiang, X. F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2/3): 577-594. https://doi.org/10.1016/j.gr.2011.07.010
      Qin, X.F., Wang, Z.Q., Wang, T., et al., 2015. The Reconfirmation of Age and Tectonic Setting of the Volcanic Rocks of Yingyangguan Group in the Eastern Guangxi: Constraints on the Structural Pattern of the Southwestern Segment of Qinzhou-Hangzhou Joint Belt. Acta Geoscientica Sinica, 36(3): 283-292(in Chinese with English abstract). http://www.researchgate.net/publication/282071585_The_reconfirmation_of_age_and_tectonic_setting_of_the_volcanic_rocks_of_Yingyangguan_group_in_the_eastern_Guangxi_Constraints_on_the_structural_pattern_of_the_southwestern_segment_of_Qinzhou-Hangzhou_
      Shu, L. S., Deng, P., Yu, J.H., et al., 2008. The Age and Tectonic Environment of the Rhyolitic Rocks on the Western Side of Wuyi Mountain, South China. Science in China Series D: Earth Sciences, 51(8): 1053-1063. https://doi.org/10.1007/s11430-008-0078-4
      Shu, L. S., Faure, M., Yu, J. H., et al., 2011. Geochronological and Geochemical Features of the Cathaysia Block (South China): New Evidence for the Neoproterozoic Breakup of Rodinia. Precambrian Research, 187(3/4): 263-276. https://doi.org/10.1016/j.precamres.2011.03.003
      Shu, L. S., Jahn, B. M., Charvet, J., et al., 2014. Early Paleozoic Depositional Environment and Intraplate Tectono-Magmatism in the Cathaysia Block (South China): Evidence from Stratigraphic, Structural, Geochemical and Geochronological Investigations. American Journal of Science, 314(1): 154-186. https://doi.org/10.2475/01.2014.05
      Shu, L. S., Wang, B., Cawood, P. A., et al., 2015. Early Paleozoic and Early Mesozoic Intraplate Tectonic and Magmatic Events in the Cathaysia Block, South China. Tectonics, 34(8): 1600-1621. https://doi.org/10.1002/2015tc003835
      Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract).
      Taylor, S.R., Mclennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
      Wang, W., Cawood, P. A., Pandit, M. K., et al., 2020. Fragmentation of South China from Greater India during the Rodinia-Gondwana Transition. Geology, 49(2): 228-232. https://doi.org/10.1130/G48308.1
      Wang, X. L., Shu, L. S., Xing, G. F., et al., 2012. Post-Orogenic Extension in the Eastern Part of the Jiangnan Orogen: Evidence from ca 800-760 Ma Volcanic Rocks. Precambrian Research, 222/223: 404-423. https://doi.org/10.1016/j.precamres.2011.07.003
      Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2007. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen: Dating the Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159(1/2): 117-131. https://doi.org/10.1016/j.precamres.2007.06.005
      Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013a. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
      Wang, Y. J., Zhang, A. M., Cawood, P. A., et al., 2013b. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231: 343-371. https://doi.org/10.1016/j.precamres.2013.03.020
      Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2011. Kwangsian Crustal Anatexis within the Eastern South China Block: Geochemical, Zircon U-Pb Geochronological and Hf Isotopic Fingerprints from the Gneissoid Granites of Wugong and Wuyi-Yunkai Domains. Lithos, 127(1/2): 239-260. https://doi.org/10.1016/j.lithos.2011.07.027
      Wang, Y. J., Zhang, F. F., Fan, W. M., et al., 2010. Tectonic Setting of the South China Block in the Early Paleozoic: Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology. Tectonics, 29(6): TC6020. https://doi.org/10.1029/2010tc002750
      Wang, Y. J., Zhang, Y. Z., Cawood, P. A., et al., 2019. Early Neoproterozoic Assembly and Subsequent Rifting in South China: Revealed from Mafic and Ultramafic Rocks, Central Jiangnan Orogen. Precambrian Research, 331: 105367. https://doi.org/10.1016/j.precamres.2019.105367
      Xia, Y., Xu, X.S., Zhu, K.Y., 2012. Paleoproterozoic S- and A-Type Granites in Southwestern Zhejiang: Magmatism, Metamorphism and Implications for the Crustal Evolution of the Cathaysia Basement. Precambrian Research, 216/217/218/219: 177-207. https://doi.org/10.1016/j.precamres.2012.07.001
      Xu, X. B., Li, Y., Tang, S., et al., 2015. Neoproterozoic to Early Paleozoic Polyorogenic Deformation in the Southeastern Margin of the Yangtze Block: Constraints from Structural Analysis and 40Ar/39Ar Geochronology. Journal of Asian Earth Sciences, 98: 141-151. https://doi.org/10.1016/j.jseaes.2014.11.015
      Xu, X. B., Xue, D. J., Li, Y., et al., 2014. Neoproterozoic Sequences along the Dexing-Huangshan Fault Zone in the Eastern Jiangnan Orogen, South China: Geochronological and Geochemical Constrains. Gondwana Research, 25(1): 368-382. https://doi.org/10.1016/j.gr.2013.03.020
      Xu, X.B., Liang, C.H., Chen, J.J., et al., 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt. Earth Science, 46(4): 1133-1150(in Chinese with English abstract).
      Xu, X.B., Zhang, Y.Q., Shu, L.S., et al., 2009. Zircon LA-ICP-MS U-Pb Dating of the Weipu Granitic Pluton in Southwest Fujian and the Changpu Migmatite in South Jiangxi: Constrains to the Timing of Caledonian Movement in Wuyi Mountains. Geological Review, 55(2): 277-285(in Chinese with English abstract).
      Xu, Y. J., Cawood, P. A., Du, Y. S, 2016. Intraplate Orogenesis in Response to Gondwana Assembly: Kwangsian Orogeny, South China. American Journal of Science, 316(4): 329-362. https://doi.org/10.2475/04.2016.02
      Xu, Y. J., Du, Y. S., Cawood, P. A., et al., 2012. Detrital Zircon Provenance of Upper Ordovician and Silurian Strata in the Northeastern Yangtze Block: Response to Orogenesis in South China. Sedimentary Geology, 267/268: 63-72. https://doi.org/10.1016/j.sedgeo.2012.05.009
      Xu, Y. J., Du, Y. S., 2018. From Periphery Collision to Intraplate Orogeny: Early Paleozoic Orogenesis in Southeastern Part of South China. Earth Science, 43(2): 333-353(in Chinese with English abstract).
      Xu, X. B., Li, Q. M., Gui, L., et al., 2018. Detrital Zircon U-Pb Geochronology and Geochemistry of Early Neoproterozoic Sedimentary Rocks from the Northwestern Zhejiang Basin, South China. Marine and Petroleum Geology, 98: 607-621. https://doi.org/10.1016/j.marpetgeo.2018.09.015
      Yan, Y., Lin, G., Li, Z.A., 2003. Provenance Tracing of Sediments by Means of Synthetic Study of Shape, Composition and Chronology of Zircon. Geotectonica et Metallogenia, 27(2): 184-190(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGYK200302011&dbcode=CJFD&year=2003&dflag=pdfdown
      Yang, C., Li, X. H., Li, Z. X., et al., 2020. Provenance Evolution of Age-Calibrated Strata Reveals when and how South China Block Collided with Gondwana. Geophysical Research Letters, 47(19): e2020GL090282. https://doi.org/10.1029/2020gl090282
      Yang, R.C., Li, J.B., Fan, A.P., et al., 2013. Research Progress and Development Tendency of Provenance Analysis on Terrigenous Sedimentary Rocks. Acta Sedimentologica Sinica, 31(1): 99-107(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201301012.htm
      Yang, S.F., Chen, H.L., Gong, G.H., et al., 2019. Sedimentary Characteristics and Basin-Orogen Processes of the Late Early Paleozoic Foreland Basins in the Lower Yangtze Region. Earth Science, 44(5): 1494-1510(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905008.htm
      Yao, J. L., Cawood, P. A., Shu, L. S., et al., 2019. Jiangnan Orogen, South China: A ~970-820 Ma Rodinia Margin Accretionary Belt. Earth-Science Reviews, 196: 102872. https://doi.org/10.1016/j.earscirev.2019.05.016
      Yao, J. L., Shu, L. S., Santosh, M., et al., 2015. Neoproterozoic Arc-Related Andesite and Orogeny-Related Unconformity in the Eastern Jiangnan Orogenic Belt: Constraints on the Assembly of the Yangtze and Cathaysia Blocks in South China. Precambrian Research, 262: 84-100. https://doi.org/10.1016/j.precamres.2015.02.021
      Yao, W.H., Li, Z.X., 2016. Tectonostratigraphic History of the Ediacaran-Silurian Nanhua Foreland Basin in South China. Tectonophysics, 674: 31-51. https://doi.org/10.1016/j.tecto.2016.02.012
      Yu, J. H., O'Reilly, S.Y., Zhou, M. F., et al., 2012. U-Pb Geochronology and Hf-Nd Isotopic Geochemistry of the Badu Complex, Southeastern China: Implications for the Precambrian Crustal Evolution and Paleogeography of the Cathaysia Block. Precambrian Research, 222/223: 424-449. https://doi.org/10.1016/j.precamres.2011.07.014
      Yu, J. H., Wang, L. J., O'Reilly, S. Y., et al., 2009. A Paleoproterozoic Orogeny Recorded in a Long-Lived Cratonic Remnant (Wuyishan Terrane), Eastern Cathaysia Block, China. Precambrian Research, 174(3/4): 347-363. https://doi.org/10.1016/j.precamres.2009.08.009
      Yu, W. C., Du, Y. S., Cawood, P. A., et al., 2015. Detrital Zircon Evidence for the Reactivation of an Early Paleozoic Syn-Orogenic Basin along the North Gondwana Margin in South China. Gondwana Research, 28(2): 769-780. https://doi.org/10.1016/j.gr.2014.07.014
      Zhao, J. H., Li, Q. W., Liu, H., et al., 2018. Neoproterozoic Magmatism in the Western and Northern Margins of the Yangtze Block (South China) Controlled by Slab Subduction and Subduction-Transform-Edge-Propagator. Earth-Science Reviews, 187: 1-18. https://doi.org/10.1016/j.earscirev.2018.10.004
      Zhao, L., Zhai, M. G., Zhou, X. W., et al., 2015. Geochronology and Geochemistry of a Suite of Mafic Rocks in Chencai Area, South China: Implications for Petrogenesis and Tectonic Setting. Lithos, 236/237: 226-244. https://doi.org/10.1016/j.lithos.2015.09.004
      Zhao, X. L., Jiang, Y., Xing, G. F., et al., 2020. The Early Paleozoic Oceanic Island Seamount in the Chencai Area, Zhejiang Province: Implication of the Yangtze-Cathaysia Amalgamation. Geological Journal, 55(2): 1148-1162. https://doi.org/10.1002/gj.3480
      Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3/4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004
      Zhou, G. Y., Wu, Y. B., Wang, H., et al., 2017. Petrogenesis of the Huashanguan A-Type Granite Complex and Its Implications for the Early Evolution of the Yangtze Block. Precambrian Research, 292: 57-74. https://doi.org/10.1016/j.precamres.2017.02.005
      Zhou, Y., Liang, X. Q., Liang, X. R., et al., 2015. U-Pb Geochronology and Hf-Isotopes on Detrital Zircons of Lower Paleozoic Strata from Hainan Island: New Clues for the Early Crustal Evolution of Southeastern South China. Gondwana Research, 27(4): 1586-1598. https://doi.org/10.1016/j.gr.2014.01.015
      Zong, K. Q., Liu, Y. S., Gao, C. G., et al., 2010. In Situ U-Pb Dating and Trace Element Analysis of Zircons in Thin Sections of Eclogite: Refining Constraints on the Ultra High-Pressure Metamorphism of the Sulu Terrane, China. Chemical Geology, 269(3/4): 237-251. https://doi.org/10.1016/j.chemgeo.2009.09.021
      柏道远, 汪永清, 王先辉, 等, 2007. 湖南衡阳燕山早期川口过铝花岗岩地球化学特征、成因与构造环境. 沉积与特提斯地质, 27(2): 49-59. doi: 10.3969/j.issn.1009-3850.2007.02.008
      陈代钊, 陈其英, 1994. 华南泥盆纪沉积演化及海水进退规程. 地质科学, 29(3): 246-255. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX403.004.htm
      胡修棉, 薛伟伟, 赖文, 等, 2021. 造山带沉积盆地与大陆动力学. 地质学报, 95(1): 139-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202101011.htm
      马力, 陈焕疆, 甘克文, 等, 2004. 中国南方大地构造和海相油气地质. 北京: 地质出版社.
      马文璞, 丘元禧, 何丰盛, 1995. 江南隆起上的下古生界缺失带: 华南加里东前陆褶冲带的标志. 现代地质, 9(3): 320-324. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ503.006.htm
      马学平, 宗普, 2010. 湖南中-晚泥盆世腕足动物组合、海平面升降及古地理演变. 中国科学: 地球科学, 40(9): 1204-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201009011.htm
      牟传龙, 周恳恳, 陈小炜, 等, 2016. 中国岩相古地理图集: 埃迪卡拉纪-志留纪. 北京: 地质出版社.
      舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003
      覃小锋, 王宗起, 王涛, 等, 2015. 桂东鹰扬关群火山岩时代和构造环境的重新厘定: 对钦杭结合带西南段构造格局的制约. 地球学报, 36(3): 283-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201503003.htm
      徐先兵, 梁承华, 陈家驹, 等, 2021. 南岭构造带基础地质特征与成矿地质背景. 地球科学, 46(4): 1133-1150. doi: 10.3799/dqkx.2020.151
      徐先兵, 张岳桥, 舒良树, 等, 2009. 闽西南玮埔岩体和赣南菖蒲混合岩锆石LA-ICPMS U-Pb年代学: 对武夷山加里东运动时代的制约. 地质论评, 55(2): 277-285. doi: 10.3321/j.issn:0371-5736.2009.02.013
      徐亚军, 杜远生, 2018. 从板缘碰撞到陆内造山: 华南东南缘早古生代造山作用演化. 地球科学, 43(2): 333-353. doi: 10.3799/dqkx.2017.582
      闫义, 林舸, 李自安, 2003. 利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究. 大地构造与成矿学, 27(2): 184-190. doi: 10.3969/j.issn.1001-1552.2003.02.012
      杨仁超, 李进步, 樊爱萍, 等, 2013. 陆源沉积岩物源分析研究进展与发展趋势. 沉积学报, 31(1): 99-107. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201301012.htm
      杨树锋, 陈汉林, 龚根辉, 等, 2019. 下扬子地区早古生代晚期前陆盆地沉积特征与盆山过程. 地球科学, 44(5): 1494-1510. doi: 10.3799/dqkx.2019.973
    • dqkxzx-46-10-3421-附表1-3.doc
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (1563) PDF downloads(175) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return