• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 2
    Feb.  2022
    Turn off MathJax
    Article Contents
    Lei Mi, Zhou Jinlong, Liang Xing, Zhou Yinzhu, Zeng Yanyan, Sun Ying, 2022. Hydrochemical Characteristics of Pore Water and Genesis of Soda Water in the Middle of the Northern Piedmont of Tianshan Mountain, Xinjiang. Earth Science, 47(2): 674-688. doi: 10.3799/dqkx.2021.027
    Citation: Lei Mi, Zhou Jinlong, Liang Xing, Zhou Yinzhu, Zeng Yanyan, Sun Ying, 2022. Hydrochemical Characteristics of Pore Water and Genesis of Soda Water in the Middle of the Northern Piedmont of Tianshan Mountain, Xinjiang. Earth Science, 47(2): 674-688. doi: 10.3799/dqkx.2021.027

    Hydrochemical Characteristics of Pore Water and Genesis of Soda Water in the Middle of the Northern Piedmont of Tianshan Mountain, Xinjiang

    doi: 10.3799/dqkx.2021.027
    • Received Date: 2021-07-03
    • Publish Date: 2022-02-25
    • The middle of the northern piedmont of Tianshan Mountain has complicated geological structure and developed faults. It is of great significance to ascertain the formation mechanism of soda water (NaHCO3 type) for understanding the relationship between groundwater hydrogeochemical process and geological conditions in the middle of the northern piedmont of Tianshan Mountain. Based on 209 groups of groundwater samples in the middle plain of the northern piedmont of Tianshan Mountain, Xinjiang, combined with geological conditions, semi-variation model, multiple linear regression of absolute principal component score model (PCA/APCS-MLR) were used to identify the spatial distribution characteristics of hydrochemical types in unconfined water and confined water, source contribution of groundwater chemical components, and the hydrogeochemical process of soda water formation and the controlling factors of geological conditions. The results showed that Na2SO4, NaHCO3 and Na2SO4 are the main types of unconfined groundwater in piedmont inclined plain, unconfined groundwater and confined groundwater in alluvial plain, respectively, the soda water in piedmont clinoplainun confined water, alluvial plain unconfined water and confined water accounted for 7.18%, 14.83% and 6.22% of the total water samples respectively. The spatial autocorrelation of Na+, HCO3- and TDS is strong in confined groundwater, but weak in unconfined groundwater, when TDS is less than 1 000 mg/L, NaHCO3 type water will be formed. The contribution rates of dissolution-enrichment factor (F1), external input factor (F2), native geological factor (F3) and geological environment factor (F4) to groundwater chemical components were 29.44%, 15.99%, 7.70% and 6.71% respectively. The formation process of soda water is not only controlled by various hydrogeochemical processes such as mineral dissolution, cation exchange, mixing and desulphidation, but also affected by geological conditions such as geological environment, geological structure, hydrogeological conditions.

       

    • loading
    • Chen, J.P., Wang, X.L., Ni, Y.Y., 2019. The Accumulation of Natural Gas and Potential Exploration Regions in the Southern Margin of the Junggar Basin. Acta Geologica Sinica, 93(5): 1002-1019+1189(in Chinese with English abstract).
      Chen, Y.F., Zhou, J.L., Zeng, Y.Y., et al., 2017. Distribution of Nitrate Contents in Groundwater of Shihezi Area, Xinjiang Autonomous Region, China and Its Influencing Factors. Earth and Environment, 45(3): 298-305(in Chinese with English abstract).
      Chen, Z.H., Wang, S.N., Wang, L., et al., 2012. Characteristics of Formation Water Chemical Fields and Its PetroleumSignificance of the Neogene in Dongying Sag, Shandong Province. Journal of Palaeogeography, 14(5): 685-693(in Chinese with English abstract).
      Du, X.B., Xie, X.N., Lu, Y.C., et al., 2010. Hydrogeochemistry of Formation Water in Relation to Overpressures and Fluid Flow in the Qikou Depression of the Bohai Bay Basin, China. Journal of Geochemical Exploration, 106(1-3): 77-83. https://doi.org/10.1016/j.gexplo.2009.12.009
      Grobe, M., Machel, H.G., 2002. Saline Groundwater in the Munsterland Cretaceous Basin, Germany: Clues to Its Origin and Evolution. Marine & Petroleum Geology, 19(3): 307-322. https://doi.org/10.1016/S0264-8172(02)00019-3
      Huang, J.O., Xian, Y., Li, W., et al., 2021. Hydrogeochemical Evolution of Groundwater Flow System in the Typical Coastal Plain: A Case Study of Hangjiahu Plain. Earth Science, 46(7): 2565-2582 (in Chinese with English abstract)
      Jia, R.L., Zhou, J.L., Zhou, Y.Z., et al., 2014. A Vulnerability Evaluation of the Phreatic Water in the Plain Area of the Junggar Basin, Xinjiang Based on the VDEAL Model. Sustainability, 6(12): 8604-8617. https://doi.org/10.3390/su6128604
      Khaled, M.A., Al Tammamy, A.M., Barseem, M.S., et al., 2016. Geoelectrical and Hydrogeological Study to Delineate the Geological Structures Affecting the Groundwater Occurrence in Wadi El Khariq Basin, Northwest El Maghara, North Sinai, Egypt. Arabian Journal of Geosciences, 9(4): 1-19. https://doi.org/10.1007/s12517-015-2286-5
      Li, J., Pang, Z.H., Froehlich, K., et al., 2015. Paleo-Environment From Isotopes and Hydrochemistry of Groundwater in East Junggar Basin, Northwest China. Journal of Hydrology, 529: 650-661. https://doi.org/10.1016/j.jhydrol.2015.02.019
      Li, Q., 2014. Spatial and Temporal Evolution of Groundwater Quality in the Plain Area of Jungar Basin(Dissertation). Xinjiang Agricultural University, Urumqi, 74-82 (in Chinese with English abstract).
      Luan, F.J., Zhou, Y.Z., Zhou, J.L., et al., 2016. Distribution Characteristics and Enrichment Factors of Groundwater Fluorine in Shihezi Area of Xinjiang. Yellow River, 38(3): 64-67+71(in Chinese with English abstract).
      Mi, Z.X., Wang, F.G., Yang, Y.Z., et al., 2018. Evaluation of the Potentiality and Suitability for CO2 Geological Storage in the Junggar Basin, Northwestern China. International Journal of Greenhouse Gas Control, 78: 62-72. https://doi.org/10.1016/j.ijggc.2018.07.024
      Qi, J.F., Chen, S.P., Yang, Q., et al., 2008. Characteristics of Tectonic Deformation with Intransitional Belt Between the Junggar Basin and the Northern Tian Shan Mountain. Oil & Gas Geology. 29(2): 252-260+282(in Chinese with English abstract).
      Qian, H., Ma, Z.Y., Li, P.Y., 2012. Hydrogeochemistry. Geological Press, Beijing, 45-62(in Chinese).
      Qiao, J.Q., Liu, L.F., Shang, X.Q., 2020. Deposition Conditions of the Jurassic Lacustrine Source Rocks in the East Fukang Sag, Junggar Basin, NW China: Evidence From Major and Trace Elements. Geological Journal, 55(7): 4936-4953. https://doi.org/10.1002/gj.3714
      Qiao, X.Y., Wang, W.K., Duan, L., et al., 2020. Regional Groundwater Cycle Patterns and Renewal Capacity Assessment at the South Edge of the Junggar Basin, China. Environmental Earth Sciences, 79(13): 334. https://doi.org/10.1007/s12665-020-09045-9
      Ravish, S., Setia, B., Deswal, S., 2020. Groundwater Quality Analysis of Northeastern Haryana Using Multivariate Statistical Techniques. Journal of the Geological Society of India, 95(4): 407-416. https://doi.org/10.1007/s12594-020-1450-z
      Ren, G.X., Hou, D.J., Shi, Y.L., et al., 2013. Relationship between Formation Water Characteristics and Hydrocarbon Accumulationin Hongshangzui Oilfield in the Northwestern Margin of the Junggar Basin. Oil & Gas Geology, 34(2): 179-184(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/syytrqdz201302006
      Safia, K., Abderrahmane, B., 2018. Multivariate Statistical Characterization of Groundwater Quality in Fesdis, East of Algeria. Journal of Water & Land Development, 37(1): 65-74. https://doi.org/10.2478/jwld-2018-0026
      Shen, T.D., Chen, X.G., Wang, W.K., et al., 2009. Investigation and Evaluation of Groundwater Resources and Environmental Problems in Junggar Basin. Geological Press, Beijing, 26-86(in Chinese).
      Si, C.S., Zhang, R.H., Yao, G.S., et al., 2016. Tectonism and Hydrocarbon Preservation Conditions of Qianbei Depression and Its Margin. Journal of China University of Mining & Technology, 45(5): 1010-1021(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD201605020.htm
      Sun, H.Y., Wei, X.F., Sun, X.M., et al. 2020. Formation Mechanism and Geological Construction Constraints of Metasilicate Mineral Water in Yudaokou Hannuoba Basalt Area. Earth Science, 45(11): 4236-4253(in Chinese with English abstract).
      Talib, M.A., Tang, Z.H., Shahab, A., et al., 2019. Hydrogeochemical Characterization and Suitability Assessment of Groundwater: A Case Study in Central Sindh, Pakistan. International Journal of Environmental Research and Public Health, 16(5): 886. https://doi.org/10.3390/ijerph16050886
      Tan, K.J., Zhang, F., Yin, L., 2012. Preservation Conditions for Formation Water and Hydrocarbon in Wuxia Area, Junggar Basin. Petroleum Geology & Experiment, 34(1): 36-39(in Chinese with English abstract).
      Thurston, G.D., Spengler, J.D., 1985. A Quantitative Assessment of Source Contributions to Inhalable Particulate Matter Pollution in Metropolitan Boston. Atmospheric Environment, 19(1): 9-25. https://doi.org/10.1016/0004-6981(85)90132-5
      Wang, J., Liang, X., Liu, Y., et al., 2019. Hydrogeochemical Evolution Along Groundwater Flow Paths in the Manas River Basin, Northwest China. Ground Water, 57(4): 575-589. https://doi.org/10.1111/gwat.12829
      Wang, Y., Shvartsev, S.L., Su, C., 2009. Genesis of Arsenic/Fluoride-Enriched Soda Water: A Case Study at Datong, Northern China. Applied Geochemistry, 24(4): 641-649. https://doi.org/10.1016/j.apgeochem.2008.12.015
      Wang, Z.H., Zhang, S.J., 1998. Discovery and Characteristics of High-Mineralized Soda-Dicarbonate-Typed Water in Karamay Oil Region. Petroleum Geology & Experiment, (1): 39-43(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD199801007.htm
      Weaver, T.R., Cartwright, I., Tweed, S.O., et al., 2006. Controls on Chemistry During Fracture-Hosted Flow of Cold CO2-Bearing Mineral Waters, Daylesford, Victoria, Australia: Implications for Resource Protection. Applied Geochemistry, 21(2): 289-304. https://doi.org/10.1016/j.apgeochem.2005.09.011
      Wei, X., Zhou, J.L., Nai, W.H., et al., 2019. Hydrochemical Characteristics and Evolution of Groundwater in the Kashgar Delta Area in Xinjiang. Environmental Science, 40(9): 4042-4051(in Chinese with English abstract).
      Wu, Y., Lu, B., Zhu, X., et al., 2019. Seasonal Variations, Source Apportionment, and Health Risk Assessment of Heavy Metals in PM_(2.5) in Ningbo, China. Aerosol and Air Quality Research, 19(9): 2083-2092. https://doi.org/10.1016/j.apr.2020.09.017
      Xiao, C.L., 2018. Hydrogeology. Tsinghua University Press, Beijing, 41-42(in Chinese).
      Xu, P.P., Feng, W.W., Qian, H., et al., 2019. Hydrogeochemical Characterization and Irrigation Quality Assessment of Shallow Groundwater in the Central-Western Guanzhong Basin, China. International Journal of Environmental Research and Public Health, 16(9): 1492. https://doi.org/10.3390/ijerph16091492
      Yang, L.J., Hou, D.J., Chen, X.D., et al., 2018. Chemical Characteristics and Geological Significance of Palaeogene Formationin Central Xihu Depression, East China Sea Basin. Natural Gas Geoscience, 29(4): 559-571+596(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201804013.htm
      Zeng, Y.Y., Zhou, Y.Z., Zhou, J.L., et al., 2018. Distribution and Enrichment Factors of High-Arsenic Groundwater in Inland Arid Area of P. R. China: A Case Study of the Shihezi Area, Xinjiang. Exposure & Health, 10(1): 1-13. https://doi.org/10.1007/s12403-016-0241-7
      Zhang, J., Zhou, J.L., Nai, W.H., et al., 2019. Spatial Distribution and Cause of Salinization of Shallow Groundwater in Plain Terrain of the Yarkant River Basin, Xinjiang. Transactions of the Chinese Society of Agricultural Engineering, 35(23): 126-134(in Chinese with English abstract).
      Zhao, S.J., Li, S.Z., Liu, X., et al., 2014. Intercontinental Orogenic Transition: Insights From Structures of the Eastern Junggar Basin Between the Altay and Tianshan Orogens. Journal of Asian Earth Sciences, 88(7): 137-148. https://doi.org/10.1016/j.jseaes.2014.03.008
      Zhou, X.Y., Wang, X.R., 2019. Impact of Industrial Activities on Heavy Metal Contamination in Soils in Three Major Urban Agglomerations of China. Journal of Cleaner Production, 230(9): 1-10. https://doi.org/10.1016/j.jclepro.2019.05.098
      陈建平, 王绪龙, 倪云燕, 等, 2019. 准噶尔盆地南缘天然气成藏及勘探方向. 地质学报, 93(5): 1002-1019+1189. doi: 10.3969/j.issn.0001-5717.2019.05.002
      陈云飞, 周金龙, 曾妍妍, 等, 2017. 新疆石河子地区地下水硝酸盐含量分布及影响因素分析. 地球与环境, 45(3): 298-305. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201703007.htm
      陈中红, 王书南, 王黎, 等, 2012. 山东东营凹陷新近系地层水化学场特征及油气意义. 古地理学报, 14(5): 685-693. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201205016.htm
      黄金瓯, 鲜阳, 黎伟, 等, 2021. 典型滨海平原区地下水流系统水化学场演化及成因: 以杭嘉湖平原为例. 地球科学, 46(7): 2565-2582. doi: 10.3799/dqkx.2020.230
      李巧, 2014. 准噶尔盆地平原区地下水水质时空演化研究(博士学位论文). 乌鲁木齐: 新疆农业大学, 74-82.
      栾风娇, 周殷竹, 周金龙, 等, 2016. 新疆石河子地区地下水氟分布及富集因素分析. 人民黄河, 38(3): 64-67+71. doi: 10.3969/j.issn.1000-1379.2016.03.018
      漆家福, 陈书平, 杨桥, 等, 2008. 准噶尔-北天山盆山过渡带构造基本特征. 石油与天然气地质, 29(2): 252-260+282. doi: 10.3321/j.issn:0253-9985.2008.02.015
      钱会, 马致远, 李培月, 等, 2012. 水文地球化学. 北京: 地质出版社, 45-62.
      任国选, 侯读杰, 史玉玲, 等, 2013. 准噶尔盆地西北缘红山嘴油田地层水特征与油气藏聚集关系. 石油与天然气地质, 34(2): 179-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201302008.htm
      谌天德, 陈旭光, 王文科, 等, 2009. 准噶尔盆地地下水资源及其环境问题调查评价. 北京: 地质出版社, 26-86.
      斯春松, 张润合, 姚根顺, 等, 2016. 黔北坳陷及周缘构造作用与油气保存条件研究. 中国矿业大学学报, 45(5): 1010-1021. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201605020.htm
      孙厚云, 卫晓锋, 孙晓明, 等, 2020. 御道口汉诺坝玄武岩偏硅酸矿泉水形成机制及其地质建造制约. 地球科学, 45(11): 4236-4253. doi: 10.3799/dqkx.2020.011
      谭开俊, 张帆, 尹路, 等, 2012. 准噶尔盆地乌夏地区地层水与油气保存条件. 石油实验地质, 34(1): 36-39. doi: 10.3969/j.issn.1001-6112.2012.01.007
      王仲侯, 张淑君, 1998. 克拉玛依油区高矿化度重碳酸钠型水的发现与特征. 石油实验地质, (1): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD199801007.htm
      魏兴, 周金龙, 乃尉华, 等, 2019. 新疆喀什三角洲地下水化学特征及演化规律. 环境科学, 40(9): 4042-4051. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201909022.htm
      肖长来, 2018. 水文地质学. 北京: 清华大学出版社, 41-42.
      杨丽杰, 侯读杰, 陈晓东, 等, 2018. 东海盆地西湖凹陷中部古近系地层水化学特征及地质意义. 天然气地球科学, 29(4): 559-571+596. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201804013.htm
      张杰, 周金龙, 乃尉华, 等, 2019. 新疆叶尔羌河流域平原区浅层地下水咸化空间分布及成因. 农业工程学报, 35(23): 126-134. doi: 10.11975/j.issn.1002-6819.2019.23.016
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(4)

      Article views (974) PDF downloads(64) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return