• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 2
    Feb.  2022
    Turn off MathJax
    Article Contents
    Li Chang'an, Zhang Yufen, Li Guoqing, 2022. Genetic Classification of Lakes in Wuhan Based on River and Lake Geological Process. Earth Science, 47(2): 577-588. doi: 10.3799/dqkx.2021.028
    Citation: Li Chang'an, Zhang Yufen, Li Guoqing, 2022. Genetic Classification of Lakes in Wuhan Based on River and Lake Geological Process. Earth Science, 47(2): 577-588. doi: 10.3799/dqkx.2021.028

    Genetic Classification of Lakes in Wuhan Based on River and Lake Geological Process

    doi: 10.3799/dqkx.2021.028
    • Received Date: 2021-03-21
    • Publish Date: 2022-02-25
    • Wuhan is located on the confluence of the Yangtze and Han river in the middle reaches of the Yangtze River. Wuhan is known as "River City" and "City with hundreds of lakes" because of dense river network and numerous lakes in Wuhan. The lakes in Wuhan are of great significance to the sustainable development of Wuhan and the construction of livable city. Many studies have been carried out on the lakes in Wuhan, but few on factors controlling formation of the lakes. The study of genesis of lakes is not only great significance to the Wuhan's modern geoenvironmental evolution but also is a basic scientific issue of lake protection. Based on geological and geomorphic survey, a comprehensive study was carried out on the evolution of river and lake palaeogeography and the historical literature records and so on. The results suggest that the formation of the lakes in Wuhan is closely related to river geological process. And the lakes in Wuhan can be divided into four types based on cause of lake formation: Oxbow lakes (also called abandoned channel lake and lake bounded by a channel and a shoal), bank burst lake, interfluvial depression lake and valley barrier lake. Based on the characteristics, geomorphic distribution and formation process of all types of lakes, we suggest that valley barrier lake is the main type of lakes inWuhan and that its formation and evolution are closely related to the interaction between river and sea controlled by climate change. The valley barrier lakes have experienced three stages: lake basin formation (20-14 ka), lake formation (14-7 ka) and lake development (since 7 ka). In addition, Wuhan has experienced the development process from "the lakes encircling a city" to "the city surrounding lakes". The reclamation of the lakes is the most important man-made natural reconstruction project in Wuhan, which is also the main cause of the tension between man and land at present. The major lakes in Hankou area are interfluvial depression lake. The mode of filling development of these lakes is "Dike-Draining-Land". The lakes in Wuchang and Hanyang areas are dominated by valley barrier lakes. The mode of lake surrounding development of these lake is "Lake branches filling and Land forming".

       

    • loading
    • Cao, G. J., Wang, J., Wang, L. J., et al., 2010. Characteristics and Runoff Volume of the Yangtze River Paleo-Valley at Nanjing Reach in the Last Glacial Maximum. Journal of Geographical Sciences, 20(3): 431-440. https://doi.org/10.1007/s11442-010-0431-3
      Chen, D. P., Li, C. A., Bai, D. Y., et al., 2014. Preliminary Discussion on the Quaternary Stratigraphic Framework of Dongting Basin. Geological Science and Technology Information, 33(1): 67-73(in Chinese with English abstract).
      Chen, Z. Y., Stanley, D. J., 1998. Sea-Level Rise on Eastern China's Yangtze Delta. Journal of Coastal Research, 14(1): 360-366. https://www.jstor.org/stable/pdf/4298785.pdf
      Gu, Y. S., Li, X. Y., Qiu, H. O., et al., 2008a. Sediments Records of Eutrophication History in the Donghu Lake, Wuhan, over the Past 100 Years. Ecology and Environment, 17(1): 35-40(in Chinese with English abstract).
      Gu, Y. S., Qiu, H. O., Xie, S. C., et al., 2008b. Lake Sediment Records for Eutrophication History in Response to Human Activity during Recent Century in the Liangzi Lake, Hubei Province. Earth Science, 33(5): 679-686 (in Chinese with English abstract).
      He, B. Y., 2002. The Origin Types and Their Characteristics of the Lakes in Jianghan Plain. Journal of Central China Normal University (Nat. Sci. ), 36(2): 241-244(in Chinese with English abstract).
      He, Q. H., Yu, D. Q., Wang, L. C., et al., 2020. Evolution Process and Characteristics of Lower Jingjiang Paleo-Channel in Recent 400 Years. Earth Science, 45(6): 1928-1936(in Chinese with English abstract).
      Lambeck, K., Rouby, H., Purcell, A., et al., 2014. Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences of the United States of America, 111(43): 15296-15303. https://doi.org/10.1073/pnas.1411762111
      Li, C. A., 1998. Effect of Tilted Uplift of Tongbai-Dabie Mountains on Middle Yangtze River Environment. Earth Science, 23(6): 562-566(in Chinese with English abstract).
      Li, C. A., Chen, J., Chen, Z. Y., et al., 2009. Consideration on Research of Water Environment of Yangtze River Basin. Journal of Yangtze River Scientific Research Institute, 26(5): 11-17(in Chinese with English abstract).
      Li, C. A., Yin, H. F., Yu, L. Z., et al., 2000. Concept Model on the Fluvial Environmental System: Mountain-River-Lake-Sea Interaction and Sensitive Responding to Global Change. Resources and Environment in the Yangtze Basin, 9(3): 358-363(in Chinese with English abstract).
      Li, C.A., Zhang, Y.F., 2021. The Formation and Development of Wuhan City and the Evolution of Man-Land Relationship. Acta Geologica Sinica, 95(3): 940-942(in Chinese with English abstract).
      Li, C. X., Chen, Q. Q., Zhang, J. Q., et al., 2000. Stratigraphy and Paleoenvironmental Changes in the Yangtze Delta during the Late Quaternary. Journal of Asian Earth Sciences, 18(2000): 453-469. https://doi.org/10.1016/S1367-9120(99)00078-4
      Liu, J. P., Milliman, J. D., Gao, S., et al., 2004. Holocene Development of Yellow River's Subaqueous Delta, North Yellow Sea. Marine Geology, 209(1-4): 45-67. https://doi.org/10.1016/j.margeo.2004.06.009
      Ma, J. W., Huang, S. F., Xu, Z. N., 2017. Satellite Remote Sensing of Lake Area in Wuhan from 1973 to 2015. Journal of Hydraulic Engineering, 48(8): 903-913(in Chinese with English abstract).
      Ma, R. H., Yang, G. S., Duan, H. T., et al., 2010. China's Lakes at Present: Number, Area and Spatial Distribution. Sci. China Earth Sci. , 54(2): 283-289. https://doi.org/10.1007/.e11430-010-4052-6
      Pei, L. Z., Yan, D. P., Zhang, H. X., et al., 2018. Research on Evolution Characteristics and Causes of Urban Lakes in Wuhan from 1960s. Geology and Mineral Resources of South China, 34(1): 78-86(in Chinese with English abstract).
      Song, B., Li, Z., Saito, Y., et al., 2013. Initiation of the Changjiang (Yangtze) Delta and Its Response to the Mid-Holocene Sea Level Change. Palaeogeography Palaeoclimatology Palaeoecology, 388: 81-97. https://doi.org/10.1016/j.palaeo.2013.07.026
      Tu, G. P., Zhang, Y. F., Li, C. A., et al., 2021. Study on the Evolution of Yingwuzhou and Related Discussion. Journal of Central China Normal University(Nat. Sci. ), 55(1): 98-109(in Chinese with English abstract).
      Xie, Z. R., Yuan, L. W., 2012. Fluctuation Characteristics of Holocene Sea Level Change and Its Environmental Implications. Quaternary Sciences, 32(6): 1065-1077(in Chinese with English abstract).
      Xu, Y. T., Lai, Z. P., Li, C.A., 2019. Sea-Level Change as the Driver for Lake Formation in the Yangtze Plain-A Review. Global and Planetary Change, 181: 102980. https://doi.org/10.1016/j.gloplacha.2019.102980.
      Yang, D. Y., 1986. The Paleoenvironment of the Mid-Lower Regions of Changjiang in the Full-Glacial Period of Late Pleistocene. Acta Geographica Sinica, 41(4): 302-310(in Chinese with English abstract). doi: 10.11821/xb198604002
      Yang, H. R., Xie, Z. R., 1984. Sea-Level Changes along the East Coast of China over the Last 20, 000 Years. Oceanogia et Limnologia Sinica, 15(1): 1-13(in Chinese with English abstract).
      Yang, K., Duan, G. H., Niu, R. Q., et al., 2016. Analysis of Lake Changes in Wuhan Based on Multi-Source Remote Sensing Data. Journal of Yangtze River Scientific Research Institute, 33(1): 139-142, 146(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-CJKB201601032.htm
      Yang, S. Y., Bi, L., Li, C., et al., 2015. Major Sinks of the Changjiang (Yangtze River): Derived Sediments in the East China Sea during the Late Quaternary. Geological Society of London Special Publications, 429(6): 137-152. https://doi.org/10.1144/SP429.6
      Zhao, X. T., Tang, L. Y., Shen, C. M., et al., 1994. Climate Change and Sea Level Change in Qingfeng profile, Jianhu, Jiangsu in Holocene. Acta Oceanologica Sinica, 16(1): 78-88(in Chinese).
      Zheng, H. B., Zhou, Y. S., Yang, Q., et al., 2018. Spatial and Temporal Distribution of Neolithic Sites in Coastal China: Sea Level Changes, Geomorphic Evolution and Human Adaption. Scientia Sinica Terrae, 48(2): 127-137. doi: 10.1360/N072017-00099
      陈渡平, 李长安, 柏道远, 等, 2014. 洞庭盆地第四纪地层格架初拟. 地质科技情报, 33(1): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401011.htm
      顾延生, 李雪艳, 邱海鸥, 等, 2008a. 100年来东湖富营养化发生的沉积学记录. 生态环境, 17(1): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200801009.htm
      顾延生, 邱海鸥, 谢树成, 等, 2008b. 湖北梁子湖近代沉积记录对人类活动的响应. 地球科学, 33(5): 679-686. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200805014.htm
      何报寅, 2002. 江汉平原湖泊的成因类型及其特征. 华中师范大学学报(自然科学版), 36(2): 241-244. doi: 10.3321/j.issn:1000-1190.2002.02.024
      贺秋华, 余德清, 王伦澈, 等, 2020. 近400多年下荆江河段古河道演变过程及特征. 地球科学, 45(6): 1928-1936. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006006.htm
      李长安, 1998. 桐柏-大别山掀斜隆升对长江中游环境的影响. 地球科学, 23(6): 562-566. doi: 10.3321/j.issn:1000-2383.1998.06.004
      李长安, 陈进, 陈中原, 等, 2009. 长江流域水环境问题研究之思考——基于流域演化"山-河-湖-海互动理论"的认识. 长江科学院院报, 26(5): 11-17. doi: 10.3969/j.issn.1001-5485.2009.05.004
      李长安, 殷鸿福, 俞立中, 等, 2000. 流域环境系统演化概念模型: 山-河-湖-海互动及对全球变化的敏感响应——以长江为例. 长江流域资源与环境, 9(3): 358-363. doi: 10.3969/j.issn.1004-8227.2000.03.014
      李长安, 张玉芬, 2021. 武汉城市形成发展及人地关系演变. 地质学报, 95(3): 940-942. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202103024.htm
      马建威, 黄诗峰, 许宗男, 2017. 基于遥感的1973~2015年武汉市湖泊水域面积动态监测与分析研究. 水利学报, 48(8): 903-913. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201708003.htm
      裴来政, 鄢道平, 张宏鑫, 等, 2018.1960年代以来武汉市湖泊演化特征及其成因浅析. 华南地质与矿产, 34(1): 78-86. doi: 10.3969/j.issn.1007-3701.2018.01.009
      涂格平, 张玉芬, 李长安, 等, 2021. 鹦鹉洲的演化及相关问题的讨论. 华中师范大学学报(自然科学版), 55(1): 98-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ202101015.htm
      谢志仁, 袁林旺, 2012. 略论全新世海面变化的波动性及其环境意义. 第四纪研究, 32(6): 1065-1077. doi: 10.3969/j.issn.1001-7410.2012.06.02
      杨达源, 1986. 晚更新世冰期最盛时长江中下游地区的古环境. 地理学报, 41(4): 302-310. doi: 10.3321/j.issn:0375-5444.1986.04.002
      杨怀仁, 谢志仁, 1984. 中国东部近20000年来的气候波动与海面升降运动. 海洋与湖沼, 15(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ198401000.htm
      杨柯, 段功豪, 牛瑞卿, 等, 2016. 基于多源遥感影像的武汉都市发展区湖泊变迁分析. 长江科学院院报, 33(1): 139-142, 146. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201601032.htm
      赵希涛, 唐领余, 沈才明, 等, 1994. 江苏建湖庆丰剖面全新世气候变迁和海面变化. 海洋学报, 16(1): 78-88. doi: 10.3321/j.issn:0253-4193.1994.01.004
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (2223) PDF downloads(181) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return