• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 2
    Feb.  2022
    Turn off MathJax
    Article Contents
    Mao Nan, Liu Guimin, Li Lisha, Li Xiaoming, Zhang Bo, Xu Haiyan, Wu Xiaodong, 2022. Methane Fluxes and Their Relationships with Methane-Related Microbes in Permafrost Regions of the Qilian Mountains. Earth Science, 47(2): 556-567. doi: 10.3799/dqkx.2021.037
    Citation: Mao Nan, Liu Guimin, Li Lisha, Li Xiaoming, Zhang Bo, Xu Haiyan, Wu Xiaodong, 2022. Methane Fluxes and Their Relationships with Methane-Related Microbes in Permafrost Regions of the Qilian Mountains. Earth Science, 47(2): 556-567. doi: 10.3799/dqkx.2021.037

    Methane Fluxes and Their Relationships with Methane-Related Microbes in Permafrost Regions of the Qilian Mountains

    doi: 10.3799/dqkx.2021.037
    • Received Date: 2021-10-11
    • Publish Date: 2022-02-25
    • Global warming may cause the decomposition of organic carbon in permafrost regions and release methane (CH4) into the atmosphere, while the correlation between methane fluxes in permafrost regions and the structure of methane-related microbes and the abundance of functional genes remains unclear. In this study, we selected the permafrost region of the Qilian Mountains in the northern Qinghai-Tibet Plateau, and the field work was conducted from June 2019 to January 2020. The CH4 fluxes were measured at different altitudes using static chamber-gas chromatography. The soil physical and chemical variables and abundances of CH4 function genes were analyzed. The results show that the methane fluxes largely increased with the altitude. It appeared as a source at 4 100 m and 3 900 m, while other altitude areas appear as carbon sinks. The soil moisture content, conductivity and mcrA gene abundance were positively correlated with CH4 fluxes. The results showed that CH4 flux at different altitudes in the permafrost regions of Qilian Mountains were affected by soil moisture content and mcrA gene abundance, while organic carbon content mainly affected microbial diversity.

       

    • loading
    • Aronson, E. L., Allison, S. D., Helliker, B. R, 2013. Environmental Impacts on the Diversity of Methane-Cycling Microbes and Their Resultant Function. Frontiers in Microbiology, 4: 225. https://doi.org/10.3389/fmicb.2013.00225
      Cai, C.Y., He, Z.F., Hu, B. L, 2016. Progresses in the Classification and Mechanism of Methane-Oxidizing Bacteria. Journal of Zhejiang University, 42(3): 273-281(in Chinese with English abstract). https://www.researchgate.net/publication/344746674_Environmental_and_Microbial_Interactions_Shape_Methane-Oxidizing_Bacterial_Communities_in_a_Stratified_Lake
      Cao, B., 2018. Conditions and Dynamics of Permafrost in the Qilian Mountains over the Upper Reaches of Heihe River Basin(Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).
      Chen, J.W., Ge, J.W., Feng, L., et al., 2020. Methane Flux Characteristics and Its Relationship with Soil Microbial Community Composition of Dajiuhu Peatland in Shennongjia. Earth Science, 45(3): 1082-1092 (in Chinese with English abstract).
      Feng, H. L., Guo, J. H., Han, M. H., et al., 2019. A Review of the Mechanisms and Controlling Factors of Methane Dynamics in Forest Ecosystems. Forest Ecology and Management, 455: 117702. https://doi.org/10.1016/j.foreco.2019.117702
      Gou, X. H., Zhang, F., Deng, Y., et al., 2012. Patterns and Dynamics of Tree-Line Response to Climate Change in the Eastern Qilian Mountains, Northwestern China. Dendrochronologia, 30(2): 121-126. https://doi.org/10.1016/j.dendro.2011.05.002
      Guan, C.F., He, F.J., Han, H.B., et al., 2020. Effects of Environmental and Microbial Factors on Soil Methane of the Different Vegetation Types at Longbaota Natural Reserve. Ecology and Environmental Sciences, 29(5): 987-995 (in Chinese with English abstract).
      Hu, Q.W., Ouyang, H., Liu, X. D, 2006. Distribution Characteristics of Soil Organic Carbon and Total Nitrogen along the Altitudinal Belt in the Northern Slope of Qilian Mountains. Journal of Mountain Science, 24(6): 654-661(in Chinese with English abstract).
      Hugelius, G., Strauss, J., Zubrzycki, S., et al., 2014. Estimated Stocks of Circumpolar Permafrost Carbon with Quantified Uncertainty Ranges and Identified Data Gaps. Biogeosciences, 11(23): 6573-6593. https://doi.org/10.5194/bg-11-6573-2014
      IPCC. 2014. Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change. Cambridge University Press, England.
      Le Mer, J., Roger, P, 2001. Production, Oxidation, Emission and Consumption of Methane by Soils: a Review. European Journal of Soil Biology, 37(1): 25-50. https://doi.org/10.1016/S1164-5563(01)01067-6
      Li, D.M., Cheng, Y.H., Liu, M.Q., et al., 2013. Relationship between Methane Emission and the Community Structure and Abundance of Methanogens under Double Rice Cropping System. Journal of Agro-Environment Science, 32(4): 866-873(in Chinese with English abstract).
      Li, L.L., 2018. The Correlationship Between Permafrost Micro-Environment and Vegetation Succession in Upper Reaches of Heihe(Dissertation). Lanzhou University, Lanzhou(in Chinese with English abstract).
      Li, S., Song, L., Gao, X., et al., 2017. Microbial Abundances Predict Methane and Nitrous Oxide Fluxes from a Windrow Composting System. Frontiers in Microbiology, 8: 409. https://doi.org/10.3389/fmicb.2017.00409
      Li, T. T., Raivonen, M., Alekseychik, P., et al., 2016. Importance of Vegetation Classes in Modeling CH4 Emissions from Boreal and Subarctic Wetlands in Finland. Science of the Total Environment, 572: 1111-1122. https://doi.org/10.1016/j.scitotenv.2016.08.020
      Li, Z.P., Wu, X.C., Chen, B.Y., 2007. Changes in Transformation of Soil Organic Carbon and Functional Diversity of Soil Microbial Community Under Different Land Use Patterns. Scientia Agricultura Sinica, 40(8): 1712-1721 (in Chinese with English abstract).
      Lieberman, R. L., Rosenzweig, A. C, 2004. Biological Methane Oxidation: Regulation, Biochemistry, and Active Site Structure of Particulate Methane Monooxygenase. Critical Reviews in Biochemistry and Molecular Biology, 39(3): 147-164. https://doi.org/10.1080/10409230490475507
      Magoc, T., Salzberg, S. L, 2011. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics (Oxford, England), 27(21): 2957-2963. https://doi.org/10.1093/bioinformatics/btr507
      Mu, C. C., Abbott, B. W., Zhao, Q., et al., 2017. Permafrost Collapse Shifts Alpine Tundra to a Carbon Source but Reduces N2O and CH4 Release on the Northern Qinghai-Tibetan Plateau. Geophysical Research Letters, 44(17): 8945-8952. https://doi.org/10.1002/2017GL074338
      Mu, C. C., Li, L. L., Wu, X. D., et al., 2018. Greenhouse Gas Released from the Deep Permafrost in the Northern Qinghai-Tibetan Plateau. Scientific Reports, 8(1): 1-9. https://doi.org/10.1038/s41598-018-22530-3
      Ouyang, M.L., Zeng, D.P., Min, Q.W., et al., 2014. Ecological Stoichiometry Characteristics of Soil Carbon, Nitrogen and Phosphorus in the Tea Garden of Drum Mountain. Journal of Soil and Water Conservation, 28(2): 297-301 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0048969720313814
      Qin, L., Lv, G.H., He, X.M., 2013. Effects of Freezing-Thawing on Soil Microbial Quantity and Community Structure around the Ebinur Lake. Journal of Glaciology and Geocryology, 35(6): 1590-1599 (in Chinese with English abstract).
      Song, C. C., Xu, X. F., Sun, X. X., et al., 2012. Large Methane Emission Upon Spring Thaw from Natural Wetlands in the Northern Permafrost Region. Environmental Research Letters, 7(3): 034009. https://doi.org/10.1088/1748-9326/7/3/034009
      Steinberg, L. M., Regan, J. M, 2008. Phylogenetic Comparison of the Methanogenic Communities from an Acidic, Oligotrophic Fen and an Anaerobic Digester Treating Municipal Wastewater Sludge. Applied and Environmental Microbiology, 74(21): 6663-6671. https://doi.org/10.1128/aem.00553-08 doi: 10.1128/AEM.00553-08
      Voigt, C., Marushchak, M. E., Mastepanov, M., et al., 2019. Ecosystem Carbon Response of an Arctic Peatland to Simulated Permafrost Thaw. Global Change Biology, 25(5): 1746-1764. https://doi.org/10.1111/gcb.14574
      Wang, X.W., Li, X.Z., Lv, J.J., et al., 2010. Effects of Temperature on the Carbon Mineralization of Peat in The Permafrost Wetland in the Da Xing An Mountains. Quaternary Sciences, 30(3): 591-597 (in Chinese with English abstract).
      Wang, Y.F., Cai, Y, F., Hou, F.J., et al., 2019. Aerobic Methane Oxidation in Typical Grassland Soil. Acta Microbiologica Sinica, 59(6): 1116-1126 (in Chinese with English abstract).
      Wang, Y.F., Wei, S., P., Cui, H.P., et al., 2016. Methane Metabolic Microbial Community Structure in the Active Layer and the Permafrost Layer of the Qilian Permafrost, China. Chinese Journal of Applied and Environmental Biology, 22(4): 592-598 (in Chinese with English abstract).
      Watson, R.T., Zinyowera, M.C., Moss, R.H. 1996. Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Intergovernmental Panel on Climate Change. Cambridge University Press, England.
      Wu, X.D., Wu, T.H., 2020. Permafrost Degradation has Important Effects on Climate and Human Society. Chinese Journal of Nature, 42(5): 425-431 (in Chinese with English abstract).
      Yang, G. B., Peng, Y. F., Olefeldt, D., et al., 2018. Changes in Methane Flux along a Permafrost Thaw Sequence on the Tibetan Plateau. Environmental Science & Technology, 52(3): 1244-1252. https://doi.org/10.1021/acs.est.7b04979
      Yang, Y., Chen, R.S., Ji, X.B., 2007. Variations of Glaciers in the Yeniugou Watershed of Heihe River Basin from 1956 to 2003. Journal of Glaciology and Geocryology, 29(1): 100-106 (in Chinese with English abstract).
      Yvon-Durocher, G., Allen, A. P., Bastviken, D., et al., 2014. Methane Fluxes Show Consistent Temperature Dependence across Microbial to Ecosystem Scales. Nature, 507(7493): 488-491. https://doi.org/10.1038/nature13164
      Zhang, Y. F., Cui, M. M., Duan, J. B., et al., 2018. Abundance, rather than Composition, of Methane-Cycling Microbes Mainly Affects Methane Emissions from Different Vegetation Soils in the Zoige Alpine Wetland. MicrobiologyOpen, 8(4): e00699. https://doi.org/10.1002/mbo3.699
      Zhao, C. Y., Nan, Z. R., Cheng, G. D, 2005. Methods for Modelling of Temporal and Spatial Distribution of Air Temperature at Landscape Scale in the Southern Qilian Mountains, China. Ecological Modelling, 189(1/2): 209-220. https://doi.org/10.1016/j.ecolmodel.2005.03.016
      Zhao, Q.F., 2006. Genetic Diversity of Plants of Genus Kobresia in the East of Qinghai-Tibet Plaeau(Dissertation). Lanzhou University, Lanzhou(in Chinese with English abstract).
      Zhao, Y.F., Hong, M.M., Ou, Y.S., et al., 2018. The Stoichiometric Characteristics of Soil C, N, P in Mountain Steppe of Eastern Tibetan Plateau. Ecological Science, 37(5): 25-32 (in Chinese with English abstract).
      蔡朝阳, 何崭飞, 胡宝兰, 2016. 甲烷氧化菌分类及代谢途径研究进展. 浙江大学学报(农业与生命科学版), 42(3): 273-281. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNY201603002.htm
      曹斌, 2018. 黑河上游祁连山区多年冻土状态与动态研究(博士学位论文). 兰州: 兰州大学.
      谌佳伟, 葛继稳, 冯亮, 等, 2020. 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系. 地球科学, 45(3): 1082-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202003031.htm
      管崇帆, 何方杰, 韩辉邦, 等, 2020. 环境和微生物因子对隆宝滩不同植被类型土壤甲烷通量的影响. 生态环境学报, 29(5): 987-995. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ202005015.htm
      胡启武, 欧阳华, 刘贤德, 2006. 祁连山北坡垂直带土壤碳氮分布特征. 山地学报, (6): 654-661. doi: 10.3969/j.issn.1008-2786.2006.06.003
      李大明, 成艳红, 刘满强, 等, 2013. 双季稻田甲烷排放与土壤产甲烷菌群落结构和数量关系研究. 农业环境科学学报, 32(4): 866-873. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201304031.htm
      李丽丽, 2018. 黑河上游多年冻土区微环境与植被相关性研究(博士学位论文). 兰州: 兰州大学.
      李忠佩, 吴晓晨, 陈碧云, 2007. 不同利用方式下土壤有机碳转化及微生物群落功能多样性变化. 中国农业科学, (8): 1712-1721. doi: 10.3321/j.issn:0578-1752.2007.08.017
      欧阳林梅, 曾冬萍, 闵庆文, 等, 2014. 鼓山茶园土壤碳氮磷生态化学计量学特征. 水土保持学报, 28(2): 297-301. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201402057.htm
      秦璐, 吕光辉, 何学敏, 2013. 艾比湖地区冻融作用对土壤微生物数量和群落结构的影响. 冰川冻土, 35(6): 1590-1599. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201306026.htm
      王宪伟, 李秀珍, 吕久俊, 等, 2010. 温度对大兴安岭北坡多年冻土湿地泥炭有机碳矿化的影响. 第四纪研究, 30(3): 591-597. doi: 10.3969/j.issn.1001-7410.2010.03.18
      王艳发, 魏士平, 崔鸿鹏, 等, 2016. 祁连山冻土区土壤活动层与冻土层中甲烷代谢微生物群落结构特征. 应用与环境生物学报, 22(4): 592-598. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201604010.htm
      王玉芳, 蔡元锋, 侯扶江, 等, 2019. 典型草地土壤好氧甲烷氧化的微生物生态过程. 微生物学报, 59(6): 1116-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201906012.htm
      吴晓东, 吴通华, 2020. 多年冻土退化对气候和人类产生重要影响. 自然杂志, 42(5): 425-431. doi: 10.3969/j.issn.0253-9608.2020.05.011
      阳勇, 陈仁升, 吉喜斌, 2007. 近几十年来黑河野牛沟流域的冰川变化. 冰川冻土, (1): 100-106. doi: 10.3969/j.issn.1000-0240.2007.01.015
      赵庆芳, 2006. 青藏高原东部嵩草属植物遗传多样性研究(博士学位论文). 兰州: 兰州大学.
      赵云飞, 洪苗苗, 欧延升, 等, 2018. 青藏高原东部山地草地土壤碳、氮、磷元素计量特征. 生态科学, 37(5): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-STKX201805004.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(4)

      Article views (1039) PDF downloads(65) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return