• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 2
    Feb.  2022
    Turn off MathJax
    Article Contents
    Ma Aolan, Liu Hui, Mao Shengjun, Zhu Zichao, Li Minjing, 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741. doi: 10.3799/dqkx.2021.038
    Citation: Ma Aolan, Liu Hui, Mao Shengjun, Zhu Zichao, Li Minjing, 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741. doi: 10.3799/dqkx.2021.038

    Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River

    doi: 10.3799/dqkx.2021.038
    • Received Date: 2021-09-13
    • Publish Date: 2022-02-25
    • The content of manganese in shallow groundwater in Jianghan Plain is generally high. Studying the distribution characteristics of manganese in the hyporheic zone helps to understand manganese's biogeochemical process in the hyporheic zone. It is of great significance for guiding the protection of river and groundwater quality. This study takes the lateral hyporheic zone in the Han River's lower reaches as the research object. The temporal and spatial distribution of dissolved manganese under different interaction directions between river and groundwater in the lateral hyporheic zone is studied and discussed by detecting manganese concentration and its related parameters in the river and groundwater. The results showed that the dissolved manganese is enriched in the river-groundwater lateral interaction zone near the riparian zone, and the manganese content is higher in the place where there is local reverse flow; The phenomenon of local enrichment is more obvious in the interactive zone where river water supplies groundwater. After flooding for 1-3 months, the enrichment area migrates with the direction of water flow; The dissolved manganese concentration in the groundwater of the study area has a very significant positive correlation with HCO3-, Mg2+, Ca2+, and has a remarkably substantial negative correlation with NO3-. It is also negatively correlated with Fe2+. However, it is not related to the Eh and pH of groundwater in the hyporheic zone.In a word, the spatial and temporal distribution of dissolved manganese in the hyporheic zone is influenced by topographic conditions, hydrodynamics and hydrochemistry.

       

    • loading
    • Atkinson, C. A., Jolley, D. F., Simpson, S. L., 2007. Effect of Overlying Water pH, Dissolved Oxygen, Salinity and Sediment Disturbances on Metal Release and Sequestration from Metal Contaminated Marine Sediments. Chemosphere, 69(9): 1428-1437. https://doi.org/10.1016/j.chemosphere.2007.04.068
      Benner, S. G., Smart, E. W., Moore, J. N., 1995. Metal Behavior during Surface-Groundwater Interaction, Silver Bow Creek, Montana. Environmental Science & Technology, 29(7): 1789-1795. https://doi.org/10.1021/es00007a015
      Boano, F., Revelli, R., Ridolfi, L., 2008. Reduction of the Hyporheic Zone Volume Due to the Stream-Aquifer Interaction. Geophysical Research Letters, 35(9): L09401. https://doi.org/10.1029/2008GL033554
      Bryant, S. R., Sawyer, A. H., Briggs, M. A., et al., 2020. Seasonal Manganese Transport in the Hyporheic Zone of a Snowmelt-Dominated River (East River, Colorado, USA). Hydrogeology Journal, 28(4): 1323-1341. https://doi.org/10.1007/s10040-020-02146-6
      Byrne, P., Binley, A., Heathwaite, A., et al., 2014. Control of River Stage on the Reactive Chemistry of the Hyporheic Zone. Hydrological Processes, 28(17): 4766-4779. https://doi.org/10.1002/hyp.9981
      Cai, L., Hu, C., Chen, Z.H., et al., 2019. Distribution and Genesis of High Fe and Mn Groundwater in the Northeast of the Jianghan Plain. Hydrogeology & Engineering Geology, 46(4): 18-25(in Chinese with English abstract).
      Davis, A., Atkins, D, 2001. Metal Distribution in Clark Fork River Sediments. Environmental Science & Technology, 35(17): 3501-3506. https://doi.org/10.1021/es001881c
      Dong, Z. G., Zhang, L. C., Wang, C. L., et al., 2020. Progress and Problems in Understanding Sedimentary Manganese Carbonate Metallogenesis. Mineral Deposits, 39(2): 237-255. http://doi.org/10.16111/j.0258-7106.2020.02.003 (in Chinese with English abstract).
      Fischer, H., Kloep, F., Wilzcek, S., et al., 2005. A River Liver: Microbial Processes within the Hyporheic Zone of a Large Lowland River. Biogeochemistry, 76(2): 349-371. https://doi.org/10.1007/s10533-005-6896-y
      Froelich, P. N., Klinkhammer, G. P., Bender, M. L., et al., 1979. Early Oxidation of Organic Matter in Pelagic Sediments of the Eastern Equatorial Atlantic: Suboxic Diagenesis. Geochimica et Cosmochimica Acta, 43(7): 1075-1090. https://doi.org/10.1016/0016-7037(79)90095-4
      Fuller, C. C., Harvey, J. W., 2000. Reactive Uptake of Trace Metals in the Hyporheic Zone of a Mining-Contaminated Stream, Pinal Creek, Arizona. Environmental Science & Technology, 34(7): 1150-1155. https://doi.org/10.1021/es990714d
      Herndon, E. M., Havig, J. R., Singer, D. M., et al., 2018. Manganese and Iron Geochemistry in Sediments Underlying the Redox-Stratified Fayetteville Green Lake. Geochimica et Cosmochimica Acta, 231: 50-63. https://doi.org/10.1016/j.gca.2018.04.013
      Hou, Q. X., Zhang, Q., Huang, G. X., et al., 2020. Elevated Manganese Concentrations in Shallow Groundwater of Various Aquifers in a Rapidly Urbanized Delta, South China. Science of the Total Environment, 701: 134777. https://doi.org/10.1016/j.scitotenv.2019.134777
      Kulakov, V. V., Kondratyeva, L. M., Golubeva, Y. M., 2010. Geological and Biogeochemical Prerequisites for High Fe and Mn Contents in the Amur River Water. Russian Journal of Pacific Geology, 4(6): 510-519. https://doi.org/10.1134/S1819714010060060
      Kurz, M. J., Martin, J. B., Cohen, M. J., et al., 2015. Diffusion and Seepage-Driven Element Fluxes from the Hyporheic Zone of a Karst River. Freshwater Science, 34(1): 206-211. https://doi.org/10.1086/679654
      Lam, P., Kuypers, M. M. M., 2011. Microbial Nitrogen Cycling Processes in Oxygen Minimum Zones. Annual Review of Marine Science, 3(1): 317-345. https://doi.org/10.1146/annurev-marine-120709-142814
      Lan, K., Liang, X., Li, J., 2020. Hydrochemical Characteristics of Groundwater of the Hanjiang Zone in the Jianghan Plain. Safety and Environmental Engineering, 27(5): 1-9, 16(in Chinese with English abstract).
      Li, J., Cen, Y. Y., Li, Y., 2019. The Research Advances in the Mechanism of Manganese-Induced Neurotoxicity. Toxin Reviews, 38(1): 54-60. https://doi.org/10.1080/15569543.2018.1486859
      Liang, G.L., Sun, J.C., Huang, G.X., et al., 2009. Distribution and Genesis of Manganese in Groundwater in the Pearl River Delta. Geology in China, 36: 899-906(in Chinese).
      Liang, X., Zhang, J. W., Lan, K., et al., 2020. Hydrochemical Characteristics of Groundwater and Analysis of Groundwater Flow Systems in Jianghan Plain. Bulletin of Geological Science and Technology, 39(1): 21-33(in Chinese with English abstract).
      Ma, T., Shen, S., Deng, Y. M., et al., 2020. Theoretical Approaches of Survey on Earth's Critical Zone in Basin: An Example from Jianghan Plain, Central Yangtze River. Earth Science, 45(12): 4498-4511(in Chinese with English abstract).
      Marin, C., Tudorache, A., Moldovan, O. T., et al., 2010. Assessing the Contents of Arsenic and of some Heavy Metals in Surface Flows and in the Hyporheic Zone of the Arieş Stream Catchment Area, Romania. Carpathian Journal of Earth and Environmental Sciences, 5(1): 13-24.
      Nathalie, T., Joseph, N. R., Menachem, E., 2002. The Promise of Bank Filtration. Environmental Science & Technology, 36(21): 422-428. https://doi.org/10.1021/es022441j
      Packman, A. I., Brooks, N. H., 2001. Hyporheic Exchange of Solutes and Colloids with Moving Bed Forms. Water Resources Research, 37(10): 2591-2605. https://doi.org/10.1029/2001WR000477
      Ren, J. F., 2017. Distribution Characteristics and Cause Analysis of Manganese Content in Groundwater of Dezhou City. Groundwater, 39(1): 37-38(in Chinese).
      Singer, D. M., Jefferson, A. J., Traub, E. L., et al., 2018. Mineralogical and Geochemical Variation in Stream Sediments Impacted by Acid Mine Drainage is Related to Hydro-Geomorphic Setting. Elem Sci Anth, 6(1): 31. https://doi.org/10.1525/elementa.286
      Spangler, A. H., Spangler, J. G, 2009. Groundwater Manganese and Infant Mortality Rate by County in North Carolina: an Ecological Analysis. EcoHealth, 6(4): 596-600. https://doi.org/10.1007/s10393-010-0291-4
      Su, D., Su, X.S., Zhang, L. H., 2016. Redox Zonation in the Process of River Water Infiltration in the Huangjia Riverside Well Field, Shenyang City. China Environmental Science, 36(7): 2043-2050(in Chinese with English abstract).
      Triska, F. J., Kennedy, V. C., Avanzino, R. J., et al., 1989. Retention and Transport of Nutrients in a Third-Order Stream in Northwestern California: Hyporheic Processes. Ecology, 70(6): 1893-1905. https://doi.org/10.2307/1938120
      Wang, L. X., 2020. Analysis of Origin of Groundwater in Jianghan Plain Based on Typical Drillings. Earth Science, 45(2): 701-710(in Chinese with English abstract).
      Williams, D. D., 1993. Nutrient and Flow Vector Dynamics at the Hyporheic/Groundwater Interface and Their Effects on the Interstitial Fauna. Hydrobiologia, 251(1/2/3): 185-198. https://doi.org/10.1007/BF00007178
      Winter, T. C., Harvey, J. W., Franke, O. L., et al. 1998. Ground Water and Surface Water A Single Resource. U.S. Geological Survey, 1139: 1-79.
      Zeng, S. H., Cai, W. X., Zhang, Z. L., 2004. Migration and Enrichment of Manganese in Groundwater and Its Controlling Factors. Resources Environment & Engineering, (4): 39-42(in Chinese).
      Zhou, S. B., Yuan, X. Z., Peng, S. C., et al., 2014. Groundwater-Surface Water Interactions in the Hyporheic Zone under Climate Change Scenarios. Environmental Science and Pollution Research, 21(24): 13943-13955. https://doi.org/10.1007/s11356-014-3255-3
      Zielinski, P., Jekatierynczuk-Rudczyk, E., 2010. Dissolved Organic Matter Transformation in the Hyporheic Zone of a Small Lowland River. Oceanological and Hydrobiological Studies, 39(2): 97-103. https://doi.org/10.2478/v10009-010-0021-9
      蔡玲, 胡成, 陈植华, 等, 2019. 江汉平原东北部地区高铁锰地下水成因与分布规律. 水文地质工程地质, 46(4): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201904004.htm
      董志国, 张连昌, 王长乐, 等, 2020. 沉积碳酸锰矿床研究进展及有待深入探讨的若干问题. 矿床地质, 39(2): 237-255. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202002003.htm
      蓝坤, 梁杏, 李静, 2020. 江汉平原汉江带地下水水化学特征分析. 安全与环境工程, 27(5): 1-9, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202005001.htm
      梁国玲, 孙继朝, 黄冠星, 等, 2009. 珠江三角洲地区地下水锰的分布特征及其成因. 中国地质, 36: 899-906. doi: 10.3969/j.issn.1000-3657.2009.04.018
      梁杏, 张婧玮, 蓝坤, 等, 2020. 江汉平原地下水化学特征及水流系统分析. 地质科技通报, 39(1): 21-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001004.htm
      马腾, 沈帅, 邓娅敏, 等, 2020. 流域地球关键带调查理论方法: 以长江中游江汉平原为例. 地球科学, 45(12): 4498-4511. doi: 10.3799/dqkx.2020.274
      任金峰, 2017. 德州市地下水锰含量的分布特征及成因分析. 地下水, 39(1): 37-38. doi: 10.3969/j.issn.1004-1184.2017.01.012
      苏东, 苏小四, 张丽华, 等, 2016. 沈阳黄家傍河水源地河水入渗过程中氧化还原分带规律. 中国环境科学, 36(7): 2043-2050. doi: 10.3969/j.issn.1000-6923.2016.07.020
      王露霞, 梁杏, 李静, 等, 2020. 基于典型钻孔的江汉平原地下水成因分析. 地球科学, 45(2): 701-710. doi: 10.3799/dqkx.2018.363
      曾昭华, 蔡伟娣, 张志良, 2004. 地下水中锰元素的迁移富集及其控制因素. 资源环境与工程, (4): 39-42. doi: 10.3969/j.issn.1671-1211.2004.04.008
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(3)

      Article views (1046) PDF downloads(63) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return