• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 10
    Nov.  2021
    Turn off MathJax
    Article Contents
    Li Wenbin, Fan Xuanmei, Huang Faming, Wu Xueling, Yin Kunlong, Chang Zhilu, 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
    Citation: Li Wenbin, Fan Xuanmei, Huang Faming, Wu Xueling, Yin Kunlong, Chang Zhilu, 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042

    Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models

    doi: 10.3799/dqkx.2021.042
    • Received Date: 2020-11-28
      Available Online: 2021-11-03
    • Publish Date: 2021-11-03
    • This study aims to explore the influences of some modeling factors including the non-linear correlation calculation between landslides and environmental factors and the different data-based models on the uncertainty law of landslide susceptibility prediction (LSP) modeling. The Ruijin City of Jiangxi Province in China with investigated 370 landslides and 10 environmental factors is used as study case. Accordingly, a total of 20 types of different coupling modeling conditions are proposed for LSP with five different connection methods(probability statistics (PS), frequency ratio (FR), information value (Ⅳ), index of entropy (IOE) and weight of evidence (WOE)) and four different data-based models including logistic regression (LR), back propagation neural networks (BPNN), support vector machines (SVM) and random forest (RF). Meanwhile, four single LR, BPNN, SVM and RF models with the original data as input variables are also proposed, as a whole, a total of 24 types of modeling conditions for LSP are obtained based on the above 20 types of coupling conditions and 4 types of single models. Finally, the uncertainty characteristics in the LSP modeling are assessed using the area under the receiver operation curve (ROC), mean value, standard deviation and significance test, respectively. Results show follows. (1) WOE-based models have the highest LSP accuracy and low uncertainty while PS-based models have the lowest LSP accuracy and the highest uncertainty, and the FR, Ⅳ and IOE-based models are in between. (2) The single data-based models have slightly lower LSP accuracies than those of the coupling models on the whole and cannot calculate the influence law of each sub-interval of environmental factors on landslide evolution, however, the single data-based models have higher modeling efficiency than those of the coupling models. (3) Among all the data-based models, RF model has the highest LSP accuracy and relatively low uncertainty, followed by the SVM, BPNN and LR models, respectively. It is concluded that the WOE is a very excellent correlation method and the RF model predicts the optimal LSP performance, the LSP results of WOE-RF model have the lowest uncertainties and the predicted landslide susceptibility indexes are more consistent with the actual landslides distribution characteristics.

       

    • loading
    • Chang, Z. L., Du, Z., Zhang, F., et al., 2020a. Landslide Susceptibility Prediction Based on Remote Sensing Images and GIS: Comparisons of Supervised and Unsupervised Machine Learning Models. Remote Sensing, 12(3): 502. https://doi.org/10.3390/rs12030502
      Chang, Z. L., Gao, H. X., Huang, F. M., et al., 2020b. Study on the Creep Behaviours and the Improved Burgers Model of a Loess Landslide Considering Matric Suction. Natural Hazards, 103(1): 1479-1497. https://doi.org/10.1007/s11069-020-04046-0
      Chen, W., Li, W. P., Hou, E. K., et al., 2015. Application of Frequency Ratio, Statistical Index, and Index of Entropy Models and Their Comparison in Landslide Susceptibility Mapping for the Baozhong Region of Baoji, China. Arabian Journal of Geosciences, 8(4): 1829-1841. https://doi.org/10.1007/s12517-014-1554-0
      Chen, W., Xie, X. S., Peng, J. B., et al., 2018. GIS-Based Landslide Susceptibility Evaluation Using a Novel Hybrid Integration Approach of Bivariate Statistical Based Random Forest Method. CATENA, 164: 135-149. https://doi.org/10.1016/j.catena.2018.01.012
      Chen, W., Xie, X. S., Wang, J. L., et al., 2017. A Comparative Study of Logistic Model Tree, Random Forest, and Classification and Regression Tree Models for Spatial Prediction of Landslide Susceptibility. CATENA, 151: 147-160. https://doi.org/10.1016/j.catena.2016.11.032
      Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., et al., 2013. Landslide Susceptibility Mapping Using Certainty Factor, Index of Entropy and Logistic Regression Models in GIS and Their Comparison at Mugling-Narayanghat Road Section in Nepal Himalaya. Natural Hazards, 65(1): 135-165. https://doi.org/10.1007/s11069-012-0347-6
      Feng, H.J., Zhou, A.G., Yu, J.J., et al., 2016. A Comparative Study on Plum-Rain-Triggered Landslide Susceptibility Assessment Models in West Zhejiang Province. Earth Science, 41(3): 403-415(in Chinese with English abstract).
      Guo, Z.Z., Yin, K.L., Fu, S., et al., 2019. Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model. Earth Science, 44(12): 4299-4312(in Chinese with English abstract).
      Guo, Z. Z., Yin, K. L., Gui, L., et al., 2019. Regional Rainfall Warning System for Landslides with Creep Deformation in Three Gorges Using a Statistical Black Box Model. Scientific Reports, 9: 8962. https://doi.org/10.1038/s41598-019-45403-9
      Hong, H. Y., Chen, W., Xu, C., et al., 2017. Rainfall-Induced Landslide Susceptibility Assessment at the Chongren Area (China) Using Frequency Ratio, Certainty Factor, and Index of Entropy. Geocarto International, 32(2): 139-154. https://doi.org/10.1080/10106049.2015.1130086
      Huang, F. M., Cao, Z. S., Guo, J. F., et al., 2020a. Comparisons of Heuristic, General Statistical and Machine Learning Models for Landslide Susceptibility Prediction and Mapping. CATENA, 191: 104580. https://doi.org/10.1016/j.catena.2020.104580
      Huang, F. M., Cao, Z. S., Jiang, S. H., et al., 2020b. Landslide Susceptibility Prediction Based on a Semi-Supervised Multiple-Layer Perceptron Model. Landslides, 17(12): 2919-2930. https://doi.org/10.1007/s10346-020-01473-9
      Huang, F. M., Chen, J. W., Du, Z., et al., 2020c. Landslide Susceptibility Prediction Considering Regional Soil Erosion Based on Machine-Learning Models. ISPRS International Journal of Geo-Information, 9(6): 377. https://doi.org/10.3390/ijgi9060377
      Huang, F.M., Wang, Y., Dong, Z.L., et al., 2019. Regional Landslide Susceptibility Mapping Based on Grey Relational Degree Model. Earth Science, 44(2): 664-676(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201902027.htm
      Huang, F. M., Ye, Z., Jiang, S. H., et al., 2021. Uncertainty Study of Landslide Susceptibility Prediction Considering the Different Attribute Interval Numbers of Environmental Factors and Different Data-Based Models. CATENA, 202: 105250. https://doi.org/10.1016/j.catena.2021.105250
      Huang, Y., Zhao, L., 2018. Review on Landslide Susceptibility Mapping Using Support Vector Machines. CATENA, 165: 520-529. https://doi.org/10.1016/j.catena.2018.03.003
      Jacobs, L., Kervyn, M., Reichenbach, P., et al., 2020. Regional Susceptibility Assessments with Heterogeneous Landslide Information: Slope Unit- vs. Pixel-Based Approach. Geomorphology, 356: 107084. https://doi.org/10.1016/j.geomorph.2020.107084
      Li, W. B., Fan, X. M., Huang, F. M., et al., 2020. Uncertainties Analysis of Collapse Susceptibility Prediction Based on Remote Sensing and GIS: Influences of Different Data-Based Models and Connections between Collapses and Environmental Factors. Remote Sensing, 12(24): 4134. https://doi.org/10.3390/rs12244134
      Li, Y., Huang, J., Jiang, S. H., et al., 2017. A Web-Based GPS System for Displacement Monitoring and Failure Mechanism Analysis of Reservoir Landslide. Scientific Reports, 7(1): 17171. https://doi.org/10.1038/s41598-017-17507-7
      Li, Y.L., Zhang, Q., Li, M., et al., 2015. Using BP Neural Networks for Water Level Simulation in Poyang Lake. Resources and Environment in the Yangtze Basin, 24(2): 233-240(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-CJLY201502008.htm
      Liu, W. P., Luo, X. Y., Huang, F. M., et al., 2019. Prediction of Soil Water Retention Curve Using Bayesian Updating from Limited Measurement Data. Applied Mathematical Modelling, 76: 380-395. https://doi.org/10.1016/j.apm.2019.06.028
      Ma, S.Y., Xu, C., Tian, Y.Y., et al., 2019. Application of Logistic Regression Model for Hazard Assessment of Earthquake-Triggered Landslides: A Case Study of 2017 Jiuzhaigou (China) MS7.0 Event. Seismology and Geology, 41(1): 162-177 (in Chinese with English abstract). http://www.researchgate.net/publication/333249215_Application_of_logistic_regression_model_for_hazard_assessment_of_earthquake-triggered_landslides_a_case_study_of_2017_jiuzhaigouchinaM_S_70_event
      Merghadi, A., Yunus, A. P., Dou, J., et al., 2020. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth-Science Reviews, 207: 103225. https://doi.org/10.1016/j.earscirev.2020.103225
      Pham, B. T., Tien Bui, D., Prakash, I., et al., 2017. Hybrid Integration of Multilayer Perceptron Neural Networks and Machine Learning Ensembles for Landslide Susceptibility Assessment at Himalayan Area (India) Using GIS. CATENA, 149: 52-63. https://doi.org/10.1016/j.catena.2016.09.007
      Qiu, H.J., Cao, M.M., Liu, W., et al., 2014. The Susceptibility Assessment of Landslide and Its Calibration of the Models Based on Three Different Models. Scientia Geographica Sinica, 34(1): 110-115(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DLKX201401016&dbcode=CJFD&year=2014&dflag=pdfdown
      Qiu, H.J., Ma, S.Y., Cui, Y.F., et al., 2020. Reconsider the Role of Landslides. Journal of Northwest University (Natural Science Edition), 50(3): 377-385(in Chinese with English abstract).
      Regmi, A. D., Devkota, K. C., Yoshida, K., et al., 2014. Application of Frequency Ratio, Statistical Index, and Weights-of-Evidence Models and Their Comparison in Landslide Susceptibility Mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2): 725-742. https://doi.org/10.1007/s12517-012-0807-z
      Saha, S., Saha, M., Mukherjee, K., et al., 2020. Predicting the Deforestation Probability Using the Binary Logistic Regression, Random Forest, Ensemble Rotational Forest, REPTree: A Case Study at the Gumani River Basin, India. Science of the Total Environment, 730: 139197. https://doi.org/10.1016/j.scitotenv.2020.139197
      Sun, D. L., Wen, H. J., Wang, D. Z., et al., 2020. A Random Forest Model of Landslide Susceptibility Mapping Based on Hyperparameter Optimization Using Bayes Algorithm. Geomorphology, 362: 107201. https://doi.org/10.1016/j.geomorph.2020.107201
      Wang, P., Bai, X. Y., Wu, X. Q., et al., 2018. GIS-Based Random Forest Weight for Rainfall-Induced Landslide Susceptibility Assessment at a Humid Region in Southern China. Water, 10(8): 1019. https://doi.org/10.3390/w10081019
      Wang, Z.W., Wang, L., Huang, G.W., et al., 2020. Research on Multi-Source Heterogeneous Data Fusion Algorithm of Landslide Monitoring Based on BP Neural Network. Journal of Geomechanics, 26(4): 575-582(in Chinese with English abstract).
      Wu, R.Z., Hu, X.D., Mei, H.B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330(in Chinese with English abstract).
      Wu, Y.P., Zhang, Q.X., Tang, H.M., et al., 2014. Landslide Hazard Warning Based on Effective Rainfall Intensity. Earth Science, 39(7): 889-895(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201407011.htm
      Xu, C., Dai, F. C., Xu, X. W., et al., 2012. GIS-Based Support Vector Machine Modeling of Earthquake-Triggered Landslide Susceptibility in the Jianjiang River Watershed, China. Geomorphology, 145/146: 70-80. https://doi.org/10.1016/j.geomorph.2011.12.040
      Xu, Q., Dong, X.J., Li, W.L., 2019. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards. Geomatics and Information Science of Wuhan University, 44(7): 957-966(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-WHCH201907002.htm
      Xu, S.H., Liu, J.P., Wang, X.H., et al., 2020. Landslide Susceptibility Assessment Method Incorporating Index of Entropy Based on Support Vector Machine: A Case Study of Shaanxi Province. Geomatics and Information Science of Wuhan University, 45(8): 1214-1222(in Chinese with English abstract).
      Yu, X.Y., Hu, Y.J., Niu, R.Q., 2016. Research on the Method to Select Landslide Susceptibility Evaluation Factors Based on RS-SVM Model. Geography and Geo-Information Science, 32(3): 23-28, 2(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DLGT201603005.htm
      Zhang, J., Yin, K.L., Wang, J.J., et al., 2016. Evaluation of Landslide Susceptibility for Wanzhou District of Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 35(2): 284-296(in Chinese with English abstract).
      Zhang, Q.K., Ling, S.X., Li, X.N., et al., 2020. Comparison of Landslide Susceptibility Mapping Rapid Assessment Models in Jiuzhaigou County, Sichuan Province, China. Chinese Journal of Rock Mechanics and Engineering, 39(8): 1595-1610(in Chinese with English abstract). http://www.researchgate.net/publication/340330642_Distribution_Pattern_of_Coseismic_Landslides_Triggered_by_the_2017_Jiuzhaigou_Ms_70_Earthquake_of_China_Control_of_Seismic_Landslide_Susceptibility
      Zhang, S.H., Wu, G., 2019. Debris Flow Susceptibility and Its Reliability Based on Random Forest and GIS. Earth Science, 44(9): 3115-3134(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909025.htm
      Zhu, A.X., Lü, G.N., Zhou, C.H., et al., 2020. Geographic Similarity: Third Law of Geography? Journal of Geo-Information Science, 22(4): 673-679(in Chinese with English abstract).
      Zhu, L., Huang, L. H., Fan, L. Y., et al., 2020. Landslide Susceptibility Prediction Modeling Based on Remote Sensing and a Novel Deep Learning Algorithm of a Cascade-Parallel Recurrent Neural Network. Sensors, 20(6): 1576. https://doi.org/10.3390/s20061576
      Zhu, L., Wang, G. J., Huang, F. M., et al., 2021. Landslide Susceptibility Prediction Using Sparse Feature Extraction and Machine Learning Models Based on GIS and Remote Sensing. IEEE Geoscience and Remote Sensing Letters, 1-5. https://doi.org/10.1109/LGRS.2021.3054029
      冯杭建, 周爱国, 俞剑君, 等, 2016. 浙西梅雨滑坡易发性评价模型对比. 地球科学, 41(3): 403-415. doi: 10.3799/dqkx.2016.032
      郭子正, 殷坤龙, 付圣, 等, 2019. 基于GIS与WOE-BP模型的滑坡易发性评价. 地球科学, 44(12): 4299-4312. doi: 10.3799/dqkx.2018.555
      黄发明, 汪洋, 董志良, 等, 2019. 基于灰色关联度模型的区域滑坡敏感性评价. 地球科学, 44(2): 664-676. doi: 10.3799/dqkx.2018.175
      李云良, 张奇, 李淼, 等, 2015. 基于BP神经网络的鄱阳湖水位模拟. 长江流域资源与环境, 24(2): 233-240. doi: 10.11870/cjlyzyyhj201502008
      马思远, 许冲, 田颖颖, 等, 2019. 基于逻辑回归模型的九寨沟地震滑坡危险性评估. 地震地质, 41(1): 162-177. doi: 10.3969/j.issn.0253-4967.2019.01.011
      邱海军, 曹明明, 刘闻, 等, 2014. 基于三种不同模型的区域滑坡灾害敏感性评价及结果检验研究. 地理科学, 34(1): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201401016.htm
      邱海军, 马舒悦, 崔一飞, 等, 2020. 重新认识滑坡作用. 西北大学学报(自然科学版), 50(3): 377-385. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202003009.htm
      王智伟, 王利, 黄观文, 等, 2020. 基于BP神经网络的滑坡监测多源异构数据融合算法研究. 地质力学学报, 26(4): 575-582. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202004014.htm
      吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi: 10.3799/dqkx.2020.032
      吴益平, 张秋霞, 唐辉明, 等, 2014. 基于有效降雨强度的滑坡灾害危险性预警. 地球科学, 39(7): 889-895. doi: 10.3799/dqkx.2014.083
      许强, 董秀军, 李为乐, 2019. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警. 武汉大学学报·信息科学版, 44(7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907002.htm
      徐胜华, 刘纪平, 王想红, 等, 2020. 熵指数融入支持向量机的滑坡灾害易发性评价方法: 以陕西省为例. 武汉大学学报·信息科学版, 45(8): 1214-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008012.htm
      于宪煜, 胡友健, 牛瑞卿, 2016. 基于RS-SVM模型的滑坡易发性评价因子选择方法研究. 地理与地理信息科学, 32(3): 23-28, 2. doi: 10.3969/j.issn.1672-0504.2016.03.005
      张俊, 殷坤龙, 王佳佳, 等, 2016. 三峡库区万州区滑坡灾害易发性评价研究. 岩石力学与工程学报, 35(2): 284-296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm
      张玘恺, 凌斯祥, 李晓宁, 等, 2020. 九寨沟县滑坡灾害易发性快速评估模型对比研究. 岩石力学与工程学报, 39(8): 1595-1610. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008009.htm
      张书豪, 吴光, 2019. 随机森林与GIS的泥石流易发性及可靠性. 地球科学, 44(9): 3115-3134. doi: 10.3799/dqkx.2019.081
      朱阿兴, 闾国年, 周成虎, 等, 2020. 地理相似性: 地理学的第三定律?. 地球信息科学学报, 22(4): 673-679. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202004005.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(6)

      Article views (2260) PDF downloads(127) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return