• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 1
    Jan.  2022
    Turn off MathJax
    Article Contents
    Si Cuiqin, Liu Wei, Liu Xiujin, 2022. Generation Mechanism of Carboniferous Arc Magma and Cumulate Column in Middle Arc Crust, Hadanxun of Northeast Junggar. Earth Science, 47(1): 325-341. doi: 10.3799/dqkx.2021.044
    Citation: Si Cuiqin, Liu Wei, Liu Xiujin, 2022. Generation Mechanism of Carboniferous Arc Magma and Cumulate Column in Middle Arc Crust, Hadanxun of Northeast Junggar. Earth Science, 47(1): 325-341. doi: 10.3799/dqkx.2021.044

    Generation Mechanism of Carboniferous Arc Magma and Cumulate Column in Middle Arc Crust, Hadanxun of Northeast Junggar

    doi: 10.3799/dqkx.2021.044
    • Received Date: 2021-02-17
      Available Online: 2022-02-11
    • Publish Date: 2022-01-20
    • Secondary-ion mass spectrometric U-Pb age (324.8-323.1 Ma) and δ18O and laser-ablation multi-collector ICP-MS εHf(t) of zircons, mineral chemistry and whole-rock geochemistry and Nd-Sr isotopes of the Carboniferous intrusive complex of Hadanxun were analyzed in this study in order to expound the mechanism of arc magma generation and decipher high P-wave velocity body in the middle crust of Northeast Junggar. Their rare earth element distribution patterns are concave-up. The major and trace element variations from diorite (with entrained hornblendite cumulate) to monzogranite, with decreasing Dy/Yb and primitive-mantle normalized NbN/TaN, can be reproduced with quantitative modeling of fractional crystallization of hornblendite (Stage 1) and feldspar-dominated minerals (Stage 2). They exhibit high Sr/Y, low Y and mean zircon δ18O of 6.42‰, suggesting derivation from subducting oceanic-slab. Al-in-hornblende barometer reveals that the hornblendite cumulate (population 1: 26-22 km depth; population 2: 20-18 km) constitutes high P-wave velocity body in the middle crust of Northeast Junggar. The Carboniferous intrusive complex of Hadanxun exhibits high positive zircon εHf(t) (weighted mean=12.99) and depleted εNd(t) (6.22-6.55) and (87Sr/86Sr)i (0.703 7-0.704 0), precluding oceanic crust and continental-crustal materials from Chinese Altay as source component. Thus, the Northeast Junggar was an intra-oceanic arc and the oceanic-plate subduction continued until the Carboniferous.

       

    • loading
    • Allègre, C. J., Minster, J. F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1): 1-25. https://doi.org/10.1016/0012-821x(78)90123-1
      Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry, Developments in Geochemistry 2. Elsevier, Amsterdam.
      Cavosie, A. J., Kita, N. T., Valley, J. W., 2009. Primitive Oxygen-Isotope Ratio Recorded in Magmatic Zircon from the Mid-Atlantic Ridge. American Mineralogist, 94(7): 926-934. https://doi.org/10.2138/am.2009.2982
      Chen, B., Jahn, B. M., 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China: Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5): 691-703. https://doi.org/10.1016/s1367-9120(03)00118-4
      Davidson, J., Turner, S., Handley, H., et al., 2007. Amphibole "Sponge" in Arc Crust? Geology, 35(9): 787-790. https://doi.org/10.1130/g23637a.1
      Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
      Dhuime, B., Hawkesworth, C., Cawood, P., 2011. When Continents Formed. Science, 331(6014): 154-155. https://doi.org/10.1126/science.1201245
      Geng, H. Y., Sun, M., Yuan, C., et al., 2009. Geochemical, Sr-Nd and Zircon U-Pb-Hf Isotopic Studies of Late Carboniferous Magmatism in the West Junggar, Xinjiang: Implications for Ridge Subduction? Chemical Geology, 266(3-4): 364-389. https://doi.org/10.1016/j.chemgeo.2009.07.001
      Hammarstrom, J.M., Zen, E.A., 1986. Aluminum in Hornblende: An Empirical Igneous Geobarometer. American Mineralogist, 71(11-12): 1297-1313. https://doi.org/10.1180/minmag.1986.050.358.28
      Hollister, L. S., Grissom, G. C., Peters, E. K., et al., 1987. Confirmation of the Empirical Correlation of Al in Hornblende with Pressure of Solidification of Calc-Alkaline Plutons. American Mineralogist, 72(3): 231-239 http://www.minsocam.org/ammin/am72/am72_231.pdf
      Huang, X., Jin, C.W., Sun, B.S., et al., 1997. Study on the Age of Armantai Ophiolite, Xinjiang by Nd-Sr Isotope Geology. Acta Petrologica Sinica, 13(1): 85-91 (in Chinese with English abstract).
      Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35: 219-246. doi: 10.1180/minmag.1997.061.405.13
      Lee, C. T. A., Morton, D. M., Kistler, R. W., et al., 2007. Petrology and Tectonics of Phanerozoic Continent Formation: From Island Arcs to Accretion and Continental Arc Magmatism. Earth and Planetary Science Letters, 263(3-4): 370-387. https://doi.org/10.1016/j.epsl.2007.09.025
      Li, Q., Cheng, X.Q., Chen, W., et al., 2021. Discovery of Early-Middle Triassic Andesite in Erguna Massif and Its Indication of Southward Subduction of Mongol-Okhotsk Ocean Plate. Earth Science, 46(8): 2768-2785 (in Chinese with English abstract).
      Liang, P., Chen, H. Y., Hollings, P., et al., 2016. Geochronology and Geochemistry of Igneous Rocks from the Laoshankou District, North Xinjiang: Implications for the Late Paleozoic Tectonic Evolution and Metallogenesis of East Junggar. Lithos, 266-267: 115-132. https://doi.org/10.1016/j.lithos.2016.08.021
      Liu, B.S., Cheng, Z.X., Qian, C., et al., 2021. The Geochronology and Geodynamic Background Study of the Late Triassic Bimodal Pattern Intrusive Rock in Da Hinggan Mountains Duobaoshan Area. Earth Science, 46(7): 2311-2328 (in Chinese with English abstract).
      Liu, W., Liu, X. J., Liu, L. J., 2013. Underplating Generated A- and I-Type Granitoids of the East Junggar from the Lower and the Upper Oceanic Crust with Mixing of Mafic Magma: Insights from Integrated Zircon U-Pb Ages, Petrography, Geochemistry and Nd-Sr-Hf Isotopes. Lithos, 179: 293-319. https://doi.org/10.1016/j.lithos.2013.08.009
      Liu, X. J., Liu, W., Si, C. Q., 2019. Petrogenesis and Source Rocks of the High-K Calc-Alkaline and Shoshonitic I-Type Granitoids in the Northwestern Part of East Junggar, NW China. Lithos, 326-327: 298-312. https://doi.org/10.1016/j.lithos.2018.12.033
      Long, X.P., Sun, M., Yuan, C., et al., 2006. Genesis of Carboniferous Volcanic Rocks in the Eastern Junggar: Constraints on the Closure of the Junggar Ocean. Acta Petrologica Sinica, 22(1): 31-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200601003.htm
      Niu, H. C., Sato, H., Zhang, H. X., et al., 2006. Juxtaposition of Adakite, Boninite, High-TiO2 and Low-TiO2 Basalts in the Devonian Southern Altay, Xinjiang, NW China. Journal of Asian Earth Sciences, 28(4-6): 439-456. https://doi.org/10.1016/j.jseaes.2005.11.010
      Page, F. Z., Fu, B., Kita, N. T., et al., 2007. Zircons from Kimberlite: New Insights from Oxygen Isotopes, Trace Elements, and Ti in Zircon Thermometry. Geochimica et Cosmochimica Acta, 71(15): 3887-3903. https://doi.org/10.1016/j.gca.2007.04.031
      Putirka, K., 2016. Amphibole Thermometers and Barometers for Igneous Systems and Some Implications for Eruption Mechanisms of Felsic Magmas at Arc Volcanoes. American Mineralogist, 101(4): 841-858. https://doi.org/10.2138/am-2016-5506
      Schmidt, M. W., 1992. Amphibole Composition in Tonalite as a Function of Pressure: An Experimental Calibration of the Al-in-Hornblende Barometer. Contributions to Mineralogy and Petrology, 110(2/3): 304-310. https://doi.org/10.1007/bf00310745
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tang, G. J., Wang, Q., Wyman, D. A., et al., 2020. Petrogenesis of the Ulungur Intrusive Complex, NW China, and Implications for Crustal Generation and Reworking in Accretionary Orogens. Journal of Petrology, 61(2): egaa018. https://doi.org/10.1093/petrology/egaa018
      Tiepolo, M., Vannucci, R., Oberti, R., et al., 2000. Nb and Ta Incorporation and Fractionation in Titanian Pargasite and Kaersutite: Crystal-Chemical Constraints and Implications for Natural Systems. Earth and Planetary Science Letters, 176(2): 185-201. https://doi.org/10.1016/s0012-821x(00)00004-2
      Velázquez Santana, L. C., McLeod, C. L., Blakemore, D., et al., 2020. Bolivian Hornblendite Cumulates: Insights into the Depths of Central Andean Arc Magmatic Systems. Lithos, 370-371: 105618. https://doi.org/10.1016/j.lithos.2020.105618
      Wang, T., Jahn, B. M., Kovach, V. P., et al., 2009. Nd-Sr Isotopic Mapping of the Chinese Altai and Implications for Continental Growth in the Central Asian Orogenic Belt. Lithos, 110(1-4): 359-372. https://doi.org/10.1016/j.lithos.2009.02.001
      Xiao, W. J., Windley, B. F., Huang, B. C., et al., 2009. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189-1217. https://doi.org/10.1007/s00531-008-0407-z
      Xu, X.Z., Wang, Y.X., Jiang, Y.M., et al., 1992. Crustal Velocity Structure and Geotectonic Unit Division in Xinjiang-Gansu Section Based on Deep Seismic Sounding. Xinjiang Geology, 10(2): 147-154 (in Chinese with English abstract).
      Zhou, G., 2007. Geochronology, Petrology and Geochemistry of the Post-Collisional Granites along the Mayinebo Fault Zone, Altay, Xinjiang (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      Zhou, G., Zhang, Z.C., Luo, S.B., et al., 2007. Confirmation of High Temperature Strongly Peraluminous Mayin'ebo Granites in the South Margin of Altay, Xinjiang: Age, Geochemistry and Tectonic Implications. Acta Petrologica Sinica, 23(8): 1909-1920 (in Chinese with English abstract).
      Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
      黄萱, 金成伟, 孙宝山, 等, 1997. 新疆阿尔曼太蛇绿岩时代的Nd-Sr同位素地质研究. 岩石学报, 13(1): 85-91. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB701.006.htm
      李强, 程学芹, 陈伟, 等, 2021. 额尔古纳地块早-中三叠世安山岩的发现及其对蒙古-鄂霍茨克洋南向俯冲的指示. 地球科学, 46(8): 2768-2785. doi: 10.3799/dqkx.2020.319
      刘宝山, 程招勋, 钱程, 等, 2021. 大兴安岭多宝山晚三叠世双峰式侵入岩年代学及地球动力学背景. 地球科学, 46(7): 2311-2328. doi: 10.3799/dqkx.2020.214
      龙晓平, 孙敏, 袁超, 等, 2006. 东准噶尔石炭系火山岩的形成机制及其对准噶尔洋盆闭合时限的制约. 岩石学报, 22(1): 31-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601003.htm
      徐新忠, 王有学, 蒋亚明, 等, 1992. 新-甘地震测深剖面的地壳速度结构及大地构造单元划分. 新疆地质, 10(2): 147-154. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI199202006.htm
      周刚, 2007. 新疆阿尔泰玛因鄂博断裂带两侧后碰撞花岗岩类的年代学、岩石学和地球化学研究(博士学位论文). 北京: 中国地质科学院.
      周刚, 张招崇, 罗世宾, 等, 2007. 新疆阿尔泰山南缘玛因鄂博高温型强过铝花岗岩: 年龄、地球化学特征及其地质意义. 岩石学报, 23(8): 1909-1920. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708011.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)

      Article views (1160) PDF downloads(59) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return